
Transcomputation
Dr James Anderson FBCS CITP CSci

安德生

1

Agenda

• Total hardware

• Total software

2

Puzzle
• How would you arrange a total ALU?

• How would you arrange total memory addressing?

• How would you arrange total I/O?

• Physical errors are, ultimately, unavoidable so
what are the consequences of an error in a total
system?

• How would you arrange a total CPU?

3

Definitions

• Totallity - a total function gives a result in its
output class when applied to any arguments
in its input class

• Waiting time - the time an algorithm takes to
complete

4

Pipeline machines

• Totallity + known waiting time = ideal pipeline
concurrency

• Pipelines deliver energy efficiency and
unlimited scalability with constant
computational efficiency

5

Concurrency

6

Concurrency

• Parallelism minimises latency

• Pipelining maximises concurrency

7

Von Neumann program

Instruction 1

Instruction 2

Instruction 3

Instruction n

Data 1

8

Von Neumann program

Instruction 1

Instruction 2

Instruction 3

Instruction n

Data 1

9

Von Neumann program

Instruction 1

Instruction 2

Instruction 3

Instruction n

Data 1

10

Von Neumann program

Instruction 1

Instruction 2

Instruction 3

Instruction n Data 1

11

Pipeline program

Instruction 1

Instruction 2

Instruction 3

Instruction n

Data 1

12

Pipeline program

Instruction 1

Instruction 2

Instruction 3

Instruction n

Data 1

Data 2

13

Pipeline program

Instruction 1

Instruction 2

Instruction 3

Instruction n

Data 1

Data 2

Data 3

14

Pipeline program

Instruction 1

Instruction 2

Instruction 3

Instruction n Data 1

Data 2

Data 3

Data n

15

Pipeline program

Instruction 1

Instruction 2

Instruction 3

Instruction n Data 2

Data 3

Data n

16

Pipeline program

Instruction 1

Instruction 2

Instruction 3

Instruction n Data 3

Data n

17

Pipeline program

Instruction 1

Instruction 2

Instruction 3

Instruction n Data n

18

Hardware

19

Pipeline machine

• Throughput is independent of program length

• Data concurrency increases with program
length

• The bigger the program, the faster it is -
relative to a von-Neumann-core machine

20

FPGA prototype

21

Architectural prototype

• Token = 16 bit header + 80 bit float datum

• 64 k mills per chip

• 2 M mills per board

• 16 M mills per cabinet

• 20 kW per unweighted PWFLOP

22

Relative addressing

• Fixed size, relative address implements an
address horizon in an arbitrarily large machine
and maintains constant computational efficiency
regardless of the size of the machine

• Small horizon keeps the token header small

23

Conditional indirection

• Token header has one bit to signify delivery of
the datum and one bit to signify redirection of
the datum, with redirection address held in mill

• Thus two bits in the token header implement
arbitrarily complex routing

• Keeps the token header small

24

Conditional execution

• Token header has one bit to signify execution of
the instruction held in mill

• Keeps token header small

25

Architectural prototype
• Square array of mills

• Pipelined communication not just nearest
neighbour

Mill Mill Mill

26

Pipelined communication

• Multiple mills emulate a von Neumann
address space but with cycle time
proportional to distance travelled

• Multiple mills emulate a systolic array but with
bottleneck on chip I/O

• Multiple mills implement a 2D pipeline with 1D
I/O giving bottleneck on chip I/O

27

2D pipeline
• Unbreakable if-then-elseif-…-elseif-else-endif

pipeline

If Then …

Elseif Then …

Elseif Then …

28

Known waiting time

• If the waiting time of an algorithm is known
then its program can be laid out in an
unbreakable 2D pipeline or slipstream

• Slipstream programs have a cadence of the
slower of the times to effect the input or output
of a record

29

Known waiting time

• Slipstream programs, with shared data, can
execute concurrently

• Throughput = Cadence / Programs

• So an entire program can accumulate a result
in less than one clock tick!

30

Molecular dynamics

• Many clock ticks to input one record to
specify a molecule

• One clock tick to input one record to specify a
molecule interaction

• Many clock ticks to output one record to
update a molecule

31

Molecular dynamics
• 2 M mill board inputs 500 molecule specification

records in many clock ticks

• Accumulates 500 molecule-molecule interactions
per clock tick, over a stream of very many
interaction records

• Outputs 500 molecule update records in many
clock ticks

• Asymptotes to 500 program runs per clock tick

32

Unknown waiting time

• If code can be unrolled to one outer loop then
data can be circulated through external
memory and the body of the loop retains a
known waiting time with all of the above
advantages

• If loops cannot be unrolled then cadence is
the longer of the I/O or loop-body times

33

Exception handling
• If machine is total then no logical system exceptions

possible so no exception handling needed

• If waiting time is known then no programmer
exception handling needed, just let a computational
path halt and report after the waiting time

• Report physical faults on a schedule and roll
back to preceding checkpoint

• Programmer reports unknown-waiting-time exceptions

34

Software

35

Programming
• Architecture is Turing complete so any

programming language can be used

• Map-Reduce programs, with data streams of
known length, are guaranteed to be
slipstreamable

• Von Neumann programs with counted loops,
no recursion and no pointers are guaranteed
to be slipstreamable

36

Demonstration
(click on next slide)

37

38

Summary

39

Relative addressing

• Reduces token size, making hardware more
reliable and reducing power consumption

• Makes the machine scalable to any size, with
constant efficiency

40

Conditional indirection

• Implements arbitrarily complex routing in just
two header bits

41

2D addressing of mills

• Reduces token size, making hardware more
reliable and reducing power consumption

• Branches laid out in space so no dynamic,
branch-prediction failures

• Reduces time order of computations:

42

Pipelined communication

• Emulates von Neumann addressing

• Emulates systolic addressing

• Delivers ideal data concurrency

• Can have long latency

43

Totality
• Reduces the number of program (model)

errors

• Delivers unbreakable pipelines

• Removes all logical system errors

• Every syntactically correct program is
semantically correct

44

General programming

• Von Neumann languages because Turing
complete

• Systolic programming

45

Slipstream
programming

• Von Neumann languages restricted to:
counted loops, no pointers, no recursion

• Map-Reduce with known-length data-streams

46

Conclusion
• Power efficient because all tokens move a short

distance per clock tick

• Scalable to any size with constant efficiency

• Safer code because totality removes many
exceptions

• Enormous throughput of repeated computations

• Might deliver exascale on 20 MW power budget

47

