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Introduction
• Transreal arithmetic uses only the existing algorithms 

of arithmetic, but ignores the injunction not to divide 
by zero, in such a way that it preserves the maximum 
possible information about the magnitude and sign of 
numbers

• Transreal arithmetic has been proved consistent by 
translating its axioms into higher order logic and 
testing them in a computer proof system

• Over 40,000 people have obtained a copy of the 
published paper describing the consistency proof. No 
fault has been reported, but only one person has 
acknowledged trying to find a fault
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Agenda
• Transreal arithmetic

• Transreal topology

• Transreal calculus

• Conceivable physical consequences of transnumbers

• Computer exploitation of transnumbers

• Against NaN

• Work completed and underway

• Conclusion
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Transreal Numbers
Transreal numbers are fractions, , of a real numerator, 

, and a real denominator, , such that 
f

n d f n d⁄=
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Strictly Transreal Numbers
The strictly transreal numbers are:

• Positive infinity, 

• Nullity, 

• Negative infinity, 

Note that a fraction with a strictly transreal numerator 
and/or denominator simplifies to a fraction with a real 
numerator and denominator

∞ 1
0
---=

Φ 0
0
---=

∞– 1–
0

------=
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Canonical Form
The canonical form of a transreal number, :

• Is  when  and 

• Is  when 

• Is  when  and 

• Is  where  and  and , 
where  is the highest, common, factor between  
when  are both integral

• Is  when  is irrational

n d⁄

1 0⁄ n 0> d 0=

0 0⁄ n d 0= =

1 0⁄– n 0< d 0=

n′ d′⁄ n kn′= d kd′= d′ 0>
k n d,

n d,

nd 1–( ) 1⁄ nd 1–
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Irrational Fractions
There are not enough names to name every real number 
so we often chose not to write irrational fractions in 
canonical form. For example:

•

Here  is not in canonical form. Nonetheless, we may 
write irrational fractions in canonical form by 
introducing an intermediate variable. For example:

•  where 

f π 2÷ π
1
--- 2

1
---÷ π

1
--- 1

2
---× π 1×

1 2×
------------ π

2
---= = = = =

π 2⁄

f n
1
---= n π

2
---=
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com


James A.D.W. Anderson

Hong Kong & Beijing 2008

Page 8 of 38
Division and Multiplication
Division is as easy as multiplication:

• Division by zero occurs when at least one of  is 
zero

a
b
--- c

d
---÷ a

b
--- d

c
---×=

b c d, ,
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Division and Multiplication

• I used to require that every number, , ,  is 
reduced to canonical form before it is operated on, but 
it is possible to take a more relaxed approach:

• If the denominator of any argument to a multiplication 
is zero then as many factors  are included as 
are needed to make all of the denominators non-
negative

a
b
--- c

d
---÷ a

b
--- d

c
---×=

a b⁄ c d⁄ d c⁄

1–( ) 1–( )⁄
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Addition and Subtraction
Addition and subtraction are harder than division and 
multiplication:

•  in general, but

•  in particular

• Subtraction occurs when at least one of the arguments 
to addition is negative

a
b
--- c

d
---+ a d×( ) c b×( )+

b d×
----------------------------------------=

1±
0

------ 1±
0

------+ 1±( ) 1±( )+
0

-----------------------------=
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Addition and Subtraction

•  in general, but

•  in particular

• I used to require that every number , ,  is 
reduced to canonical form before it is operated on, but 
it is possible to take a more relaxed approach:

• If any argument to an addition has a zero denominator 
then that fraction is reduced to canonical form and as 
many factors  are included as are needed to 
make all of the denominators non-negative

a
b
--- c

d
---+ a d×( ) c b×( )+

b d×
----------------------------------------=

1±
0

------ 1±
0

------+ 1±( ) 1±( )+
0

-----------------------------=

a b⁄ c d⁄ k 0⁄

1–( ) 1–( )⁄
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com


James A.D.W. Anderson

Hong Kong & Beijing 2008

Page 12 of 38
Topological Spaces
The open sets of the transreal numbers are generated 
from:

And can be visualised as:

•  is the extended-real line

R ∞–{ } ∞{ } Φ{ }, , ,

∞∞–

Φ

R

∞–{ } R ∞{ }∪ ∪
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Continuity of Constant Functions
Any constant real function is continuous:

•  is continuous

But what of the constant functions:

• , , 

Ordinary calculus cannot tell us anything about the 
continuity of 

f x( ) k=

f x( ) ∞–= f x( ) ∞= f x( ) Φ=

f x( ) Φ=
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Continuity in Topological Spaces
We are interested in the continuity of constant, strictly 
transreal functions:

Let  be a topological space over the 

transreal numbers with  
and  being the set of subsets of 

Let  be the topological space with 
 and 

Now,  is the total, constant function 
 for all transreal  in 

S1 P1 T1,〈 〉=

P1 RT R ∞ ∞ Φ, ,–{ }∪= =
T1 P1

S2 P2 T2,〈 〉=
P2 Φ{ }= T2 Φ{ } ∅{ }∪=

f : P1 P2→
f x( ) Φ= x P1
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Continuity in Topological Spaces

First, if  then  and 

Second, the trivial case, if  then  and 

This completes the proof that  is continuous

Similarly, the functions  and  are 
continuous on  and , respectively

U Φ{ }= U T2∈ f 1– U( ) RT T1∈=

U ∅{ }= U T2∈

f 1– U( ) ∅= T1∈

f

f x( ) ∞–= f x( ) ∞=
RT ∞–{ }→ RT ∞{ }→
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Metric Spaces
Metric spaces are defined over a metric, , which obeys 
four axioms:

[M1]

[M2]

[M3]

[M4]

Replacing greater-than-or-equals with not-less-than 
generalises metric spaces to transmetric spaces

m

m a b,( ) m b a,( )=

m a b,( ) 0≥

m a b,( ) 0 a⇔ b= =

m a b,( ) m b c,( )+ m a c,( )≥
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Transmetric Spaces
Transmetric spaces are defined over a transmetric, , 
which obeys four axioms:

[T1]

[T2]

[T3]

[T4]

Transmetric spaces contain metric spaces as a subset so 
limiting processes continue to work for the transreal 
numbers

t

t a b,( ) t b a,( )=

t a b,( ) 0</

t a b,( ) 0 a⇔ b= =

t a b,( ) t b c,( ) t a c,( )</+
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The Euclidean Transmetric
The Euclidean transmetric, , is:

Bar notation for the Euclidean transmetric:

Bar notation for the Euclidean transmodulus:

t

t a b,( )
0 : a b=

a b–( )2 : otherwise⎩
⎨
⎧

=

x y, t x y,( )=

x t x 0,( )=
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com


James A.D.W. Anderson

Hong Kong & Beijing 2008

Page 19 of 38
Calculus
•  if for every real  there is some real 

 such that, for all real , if , then 

•  if for every real  there is some real 

 such that, for all real , it is the case that 

•  if for every real  there is some real 

 such that, for all real , it is the case that 

f x( )
x a→
lim l= ε 0>

δ 0> x 0 x a, δ< <
f x( ) l, ε<

f x( )
x ∞→
lim l= ε 0>

N x N>
f x( ) l, ε<

f x( )
x ∞→
lim ∞= ε 0>

N x N>
f x( ) ε>
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Calculus
A function can have a limit of  only in an interval 
where it is constant  because:

• The distance from  is zero or else nullity, but zero 
has a fixed value and nullity is incommensurate with 
any other number so the distance can never be reduced 
in any process, let alone a limiting process

• Growing unboundedly is not moving in the direction of 

• By contrast, a general function may have a limit of  
or else  because growing unboundedly can move 
monotonically in the direction of  or else 

Φ
Φ

Φ

Φ

∞
∞–

∞ ∞–
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Calculus
In particular, the transmetric space has:

•

So calculus using the transmetric gives:

•  is continuous

•  is continuous

•  is continuous

Which is consistent with the topological and metric 
spaces and contains the whole of ordinary calculus

∞ ∞–,– Φ Φ, ∞ ∞, 0= = =

f x( ) ∞–=

f x( ) Φ=

f x( ) ∞=
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Dirac Delta
The Dirac Delta is the asymptote of the box function 
when epsilon tends to zero:

t

t0

1
ε
---

δ t( )

t0
ε
2
---+t0

ε
2
---–
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Dirac Delta
• When epsilon tends asyptotically to zero, , the 

width tends asymptotically to zero, , the height 
tends asymptotically to infinity, , and the area is 
everywhere equal to unity, , 
because  is everywhere a fixed real number greater 
than zero. Hence, the box function is the Dirac Delta

• When epsilon is exactly zero, , the width is 
exactly zero, , the height is exactly infinity 

, and the area is exactly nullity, 
 

, whence 
the box function is not the Dirac Delta

ε 0→
w 0→

h ∞→
a w h× ε ε⁄ 1= = =

ε

ε 0=
w ε 0= =

h 1 ε⁄ 1 0⁄ ∞= = =
a w h× 0 ∞× 0 1⁄( ) 1 0⁄( )×   = = = =
0 1×( ) 1 0×( )⁄ 0 0⁄ Φ 0 0⁄ ε ε⁄= == =
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Electron Self-Interaction
The interaction of a moving electron with the electric 
field passes through the Dirac Delta as a transfer 
function, but this gives the electron an infinite self-
interaction

How can the infinity be removed from the physical 
equation?
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Electron Self-Interaction
• Use the box function in place of the Dirac Delta

• Observe that an electron has a small but non-zero 
radius

• Observe that a self-interaction is instantaneous

• Adopt an hypothesis linking transmathematics to 
physics:

• All nullity quantities lie outside our real-numbered part 
of the physical universe
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Electron Self-Interaction
• An electron  interacts with a different electron  in a 

small, but non-zero time, giving a box function area of 
unity so that a infinite real force is felt by the electron 
and the field

• An electron  interacts with itself in zero time, giving 
a box function area of nullity so that a nullity force is 
felt outside the extended-real universe and a zero force 
is felt inside the extended-real universe by the electron 
and the field. This removes the infinity from the entire 
universe

ei ej

ei
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Electron Self-Interaction

e1 e2

ε 0→
δ 1=

ε 0=
δ Φ=
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Two’s Complement
Two’s complement arithmetic is valid in itself, but using 
complement as negation is faulty in one case.

0

4–

1–

2

3

2–

3–

1
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Two’s Complement

• The complement of the most negative number is not its 
negation 

• Almost every computer suffers this weird-number fault

0

4–

1–

2

3

2–

3–

1

4–( )– 4–=
© James A.D.W. Anderson, 2008. All rights reserved. Home: http://www.bookofparagon.com

http://www.bookofparagon.com


James A.D.W. Anderson

Hong Kong & Beijing 2008

Page 30 of 38
Trans Two’s Complement

0

Φ

1–

2

∞

2–

∞–

1

• The complement of the most negative number is now 
its negation 

• And the complement of nullity is its negation 

∞–( )– ∞=

Φ– Φ=
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Trans Two’s Complement
Trans two’s complement removes the weird-number 
fault and preserves the topology of the transreal numbers

0

Φ

1–

2

∞

2–

∞–

1

∞∞–

Φ

R
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Trans Two’s Complement
Trans two’s complement:

• Removes the two’s complement fault

• Extends to multi-precision transintegers

• Extends to transfixed-point numbers

• Gives transfixed-point programming superior 
exception handling to floating-point arithmetic, 
reversing the current situation

• Extends to floating-point arithmetic so that it can 
match the exception handling of transfixed arithmetic
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Against NaN
Contemporary floating-point arithmetic uses 

•  breaks the cultural stereotype amongst 
mathematicians, programmers, and the general public 
that any object is equal to itself. This makes  
dangerous

•  breaks the Lambda calculus, because 
 is incompatible with Lambda equality, 

rendering the theory of computation void, unless  
is handled by adding unnecessary complexity to the 
calculus

NaN

NaN NaN≠

NaN

NaN
NaN NaN≠

NaN
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Against NaN
• There is no mathematical theory underlying  so 

every programmer is thrown back on his or her own 
resources. This encourages inconsistent uses of  in 
programming teams

By contrast:

• Nullity is equal to itself and has a consistent 
mathematical theory supporting it

• Therefore, nullity is much safer than 

NaN

NaN

NaN
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Software Engineering
• Software that performs all arithmetic in transreal 

numbers, or their generalisations, has no arithmetical 
exceptions

• Software that maps all language constructs, including 
memory management and peripheral handling, onto 
transreal numbers is total. That is, it has no exceptions

• Thus, transreal numbers make it easier to implement 
safety critical software
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Processor Design
A transreal processor:

• Has no exceptional states

• Has no error handling circuitry

• Never stalls on error

• Is smaller and/or faster than a conventional processor

• Can be proved correct by counting through its states in 
a small design

• Can be proved correct by algebraic induction on a 
practically sized design
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Work in Progress
Published:

• Transreal arithmetic

• Transreal trigonometry

• Transreal topology

Submitted:

• Transpower series

In preparation:

• Transreal differential calculus
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Conclusion
The transreal numbers are the best candidate for the 
principal augmentation of the real numbers because:

• They contain the real numbers and preserve the 
maximum possible information about the magnitude 
and sign of numbers on division by zero

• They appear to be consistent with all extensions of the 
real numbers

• They appear to support faster, cheaper, and safer 
computer processors than the real numbers or any 
extension of them

• They might solve some physical problems
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