
Mathematics in Defence 2011

Evolutionary and Revolutionary Effects of 
Transcomputation

NOTICE
This paper will appear in the 2nd IMA Conference on Mathematics in Defence, Defence
Academy of the United Kingdom, Shrivenham, England. October 2011.

(c) James A.D.W. Anderson 2011. All rights reserved.



Evolutionary and Revolutionary Effects of 
Transcomputation
James A.D.W. Anderson*
Abstract. We review transreal arithmetic and present transcom-
plex arithmetic. These arithmetics have no exceptions. This
leads to incremental improvements in computer hardware and
software. For example, the range of real numbers, encoded by
floating-point bits, is doubled when all of the Not-a-Number
(NaN) states, in IEEE 754 arithmetic, are replaced with real
numbers. The task of programming such systems is simplified
and made safer by discarding the unordered relational operator,
leaving only the operators less-than, equal-to, and greater than.
The advantages of using a transarithmetic in a computation, or
transcomputation as we prefer to call it, may be had by making
small changes to compilers and processor designs. However,
radical change is possible by exploiting the reliability of trans-
computations to make pipelined dataflow machines with a large
number of cores. Our initial designs are for a machine with order
one million cores. Such a machine can complete the execution
of multiple in-line programs each clock tick.

1 Introduction
The greatest contribution science makes, to the defence of a na-
tion, is to make it worth defending. In this spirit we present, in
Section 2, a tutorial on transreal arithmetic that is accessible to
school children. This gives children the mathematical tools to
deal with the non-finite numbers: infinity, minus infinity, and
nullity. Nullity is the number  as discussed later in the
present paper and in.1 We prove, elsewhere, that transreal arith-
metic, which allows division by zero, is consistent if real arith-
metic is.1 The tutorial gives a more accessible method of
reckoning than the axiomatic methods used in the proof. We
hope adults will also find it useful.

A large part of physics and applied mathematics deals with
systems of complex numbers. In the main body of the paper we
give a definition of transcomplex arithmetic which supports the
division of complex numbers by zero. This allows physical
problems to be solved exactly at a singularity, as noted earlier.2

In this earlier work,2 we extended two’s complement arith-
metic to trans-two’s-complement arithmetic by allowing divi-
sion by zero. This transarithmetic has an equal number of
positive and negative numbers. One advantage of this is that it
removes bias from all signal processing and inertial navigation

systems that both operate on two’s complement numbers and,
even sporadically, operate at full range. This removes the need
to implement additional circuitry or programs to control the bias.

The arithmetic saturates at the signed infinities: positive in-
finity and negative infinity, leaving nullity outside the range
from negative infinity to positive infinity. The encoding of nul-
lity by the most negative bit pattern removes the weird-number
fault from two’s complement arithmetic in which the computed
negation, or computed modulus, of the most negative number is
identically this negative number. Thus the highest possible mag-
nitude error is removed from two’s complement arithmetic.

We hereby propose that integer and fixed-point arithmetics
should have the same rounding modes as floating-point arith-
metics so as not to introduce artificial limits to the expressibility
of numerical programs, especially those involving division.

We now present, for the first time in the scientific literature,
proposals to improve floating-point arithmetic by using transreal
arithmetic to replace all of the Not-a-Number (NaN) states in
IEEE 754 arithmetic3, 4 and to remove the unordered relational
operator, denoted by a question mark, ?, in that standard. Trans-
floating-point numbers encode nullity where IEEE 754 has mi-
nus zero; they encode the signed infinities with maximum expo-
nent and all mantissa bits set where IEEE 754 has all mantissa
bits unset. The remaining bit patterns, with this exponent, repre-
sent real numbers not NaNs. This makes a small improvement to
the accuracy or range of some numerical programs and greatly
simplifies the programming, and improves the safety, of float-
ing-point systems. We further propose that trans-floating-point
numbers should reserve one bit as an inexact flag which may be
tested, set and cleared by user programs, in addition to being op-
erated on by trans-floating-point units (TFPUs). This reduces
the accuracy of the arithmetic but allows all computations,
whether finite or non-finite, to be sensitive to roundoff error
without requiring exception handling circuitry in the TFPU.

We note that the absence of exceptions in transreal arithmetic
means that any Turing program can be Gödelised so that it exe-
cutes without exception. More practically, the absence of any
logical exceptions means that a dataflow machine can be pipe-
lined such that computational pipelines never break, except as a
result of a physical fault. Such a machine, with order one million
TFPUs, has been designed but has not yet been built. If built, it
would complete multiple in-line programs each clock tick, offer-
ing a revolutionary improvement in computer performance.
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2 Tutorial on Transreal Arithmetic

Figure 1: Transreal number-line.

The line, in Figure 1, is the real number-line, which contains all
of the finite numbers. The big dots, , show the non-finite num-
bers. The extended-real number-line is the real number-line with
infinity, , and minus infinity, . Every number to the right
of zero, on the extended-real number-line, is positive; every
number to the left of zero, on the extended-real number-line, is
negative. Zero is neither positive nor negative. The sign of zero
is zero. This definition, which is widely accepted in the world,
contradicts the teaching of sign in French speaking primary and
secondary schools, where it is taught that zero is a positive
number. The transreal number-line is the extended-real number-
line with nullity. Nullity, , lies off the extended-real number-
line at distance and angle nullity. Nullity is neither positive nor
negative. The sign of nullity is nullity. Infinity, , is the most
positive number and minus infinity, , is the most negative
number. Infinity is bigger (further to the right on the extended-
real number-line) than any number, except itself and nullity. Mi-
nus infinity is smaller (further to the left on the extended-real
number-line) than any number except itself and nullity. Nullity
is equal to itself, but is not bigger than or smaller than any
number – because it is not on the extended-real number line.
This paints a mental picture of how the transreal numbers relate
to each other and gives a vocabulary for talking about these re-
lationships. Both aspects are extended in more advanced study.

The canonical or standard or least terms form of certain
numbers is as follows. Transreal one, , is real one divided by
real one: . Transreal minus-one, , is real minus-one
divided by real one: . Transreal zero, , is real zero divid-
ed by real one: . Transreal infinity, , is real one di-
vided by real zero: . Transreal minus-infinity, , is
real minus-one divided by real zero: . Transreal
nullity, , is real zero divided by real zero: . Any ir-
rational number  is  divided by real one: .

Transreal numbers can be expressed as transreal fractions,
, of a real numerator, , and a non-negative, real denomi-

nator, . Transreal numbers with a non-finite numerator or de-
nominator simplify to this form. An improper fraction can be
written with a negative denominator, but it must be converted to
a proper fraction, by carrying the sign up to the numerator, be-
fore applying any transreal, arithmetical operation. This can be
done by multiplying both the numerator and denominator by mi-
nus one; it can be done by negating both the numerator and the

denominator, using subtraction; and it can be done, lexically, by
moving the minus sign from the denominator to the numerator.

(1)

Transreal infinity is equal to any positive number divided by
zero. Transreal minus-infinity is equal to any negative number
divided by zero. Zero is equal to zero divided by any positive or
negative number. That is, with  we have:

(2)

The ordinary rules for multiplication and division apply uni-
versally to proper transreal-fractions. That is, they apply without
side conditions. In particular, division by zero is allowed.

(3)

(4)

Addition is more difficult than multiplication and division
because it breaks into two cases: the addition of two signed in-
finities and the general case. Two infinities are added using the
ordinary rule for adding fractions with a common denominator.
The sign of each infinity, , may be chosen independently but
the chosen sign is then carried into the corresponding term 
so that  has  and  has :

(5)

Finite fractions may be added using this rule, if they happen
to have a common denominator, but infinities cannot be added
using the following general rule of addition. If infinities were
added by the general rule we would have , but this
is inconsistent with various arithmetics of the infinite that have

. See, for example.5, 6, 7 The general case of the ad-
dition of proper transreal fractions is:

(6)

Subtraction is the addition of a negated number:

(7)

Transreal arithmetic is totally associative and totally commu-
tative but it is only partially distributive at infinity. The axiom of
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transreal distributivity1 can be broken down into a number of
cases. As usual, a number, , distributes over  only when:

(8)

If  is finite or nullity then  distributes over any . If
 is infinity or minus infinity then  distributes if 

or  or  and  have the same sign. Two numbers
have the same sign if they are both positive, both negative, both
zero or both nullity.

This is as all that has been presented to three hundred school
children. We find that pupils in the range from 12 to 16 years,
inclusive, have no psychological barriers to learning transreal
arithmetic; older children, who have started the English and
Welsh A-level syllabus, do have such intellectual inhibitions.
Adults are particularly resistant to the notion of dividing by zero.

3 Transcomplex Arithmetic

Figure 2: Transcomplex Top and Whip.

The transcomplex numbers are defined by three tuples 
which specify the polar co-ordinates of a point with respect to
complex zero, with , the radius, measured as the Euclidean
transmetric,2 and  respectively the transreal cosine and sine.
These transreal functions contain their real counterparts but have
the property that the cosine and sine of any non-finite angle is
nullity. This property is derived from their Taylor series in.8 The
Appendix defines transcomplex multiplication, division, addi-
tion and subtraction in these terms. An implementation of this
arithmetic, together with examples of the computation of gravi-
tational and electrostatic singularities, is available on-line.9

The three-tuple form has two significant advantages over
specifying transcomplex numbers in polar form as a radius and
angle. Firstly the three-tuple form is continuous in the complex
plane without a cut and without winding onto a Riemann sur-
face. Secondly the computation of the arithmetical operations, in
terms of numerical sines and cosines, is more accurate and is

much faster than computing these operations in terms of trigo-
nometrical power series of angles. Further optimisations will be
readily apparent to the reader of the appendix or source code.

However, it is easier to explain the properties of transcom-
plex numbers in polar form, , which we do now. The cone,
drawn in Figure 2, is the complex plane. The apex of the cone is
labelled as complex zero, . All complex numbers with
zero radius and finite angle map onto this polar zero. The circle
at infinity, drawn above the cone, is the locus of all points with
infinite radius and finite angle:  with . The cone
and the circle at infinity make up the extended cone. If desired,
functions may be wound around the extended cone forming a
trans-Riemann surface. Cuts may also be taken in the extended
cone. The non-negative part of the transreal number line, at an-
gle nullity, is shown to the right of the figure. The point at infi-
nite radius and nullity angle, , corresponds to complex
infinity. Both complex infinity and the circle at infinity are ordi-
narily used as compactifications of the complex plane. The point
at nullity, , corresponds to the point which is ordinarily
punctured from the complex plane, as noted earlier.10 This point
is needed to construct bijective maps between Euclidean and
Projective spaces, as may be advantageous in computer vision.
The real line at angle nullity is not used in ordinary mathematics
but it is needed to make transcomplex arithmetic total. For mne-
monic purposes, the extended cone is known as the (transcom-
plex) top and the non-negative part of the transreal number-line,
at angle nullity, is known as the (transcomplex) whip. This mne-
monic helps avoid errors where one or other parts of the figure
are omitted from an analysis. Note that both of the ordinary com-
pactifications are present in the figure. A total analysis interprets
every point in the figure, even if only a subset of these points are
considered important in a practical application. We recommend
that total analyses are always undertaken in case round-off leads
to the computation of otherwise unexpected results.

The operations of transcomplex arithmetic are carried out on
transcomplex numbers in their standard form. This form may be
read off from the appendix but is given here for convenience.
The term on the left of the equivalence symbol, , is the stand-
ard form. All transreal components are in standard form.

(9)

(10)

(11)

The source code9 gives total conditions which map any syn-
tactically correct sentence , with  being any tran-
sreal numbers, onto transcomplex numbers in standard form.
Hence any syntactically correct formula of transcomplex and
transreal arithmetic is semantically correct – which is just to say
that no evaluation of the sentence produces an arithmetical ex-
ception. In practice this means that any totally transcomplex or
transreal program, that compiles correctly, executes without ex-
ception. This makes applications programs safer and removes
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the need for exception handling circuitry in a TFPU, as well as
removing the need for error signalling between TFPUs, apart, of
course, from the need to signal detected physical faults.

The operations of transcomplex arithmetic can be understood
geometrically. As usual, multiplication and division are concate-
nations of a rotation and a dilatation. Additions are obtained by
computing the resultant angle independently of the resultant ra-
dius. For example, by projecting the arguments onto finite vec-
tors in a common plane; performing addition using the
parallelogram rule; and projecting the intermediate sum, by a
dilatation, onto the resultant plane. Thus the parallelogram rule
is extended to infinite and nullity magnitudes. We maintain that
both scalar and vector quantities can be handled in this way so
that physical equations can be computed exactly at singularities,
though it remains an open question as to whether such functions
can be computed in the neighbourhood of a singularity.

The geometrical construction is easier if we blow up the apex
of the top to a circle, scale the conical surface of the top to a cyl-
inder with unit radius, and draw the whip as the axis, or axle, of
the resulting Figure 3. Following Carlström,11 we call the union
of a circle and its centre point a wheel. The figure we operate on
may also be obtained by sweeping a wheel along the extended-
real part of the non-negative, transreal axle, oriented at angle
nullity. Thus all points on the rim of the swept wheel lie at a fi-
nite angle and all points on the axle lie at angle nullity. It is to be
understood that all points on the rim at zero are identified with
the unique polar zero: . It is sometimes useful to call the
centre point of a wheel a hub.

Figure 3: Transcomplex Wheel and Axle.

We illustrate the construction by verifying the transreal equation
 by stepping through the addition algorithm, (A3),

given in the appendix, describing the geometrical construction at
each stage. The reader will find it instructive to verify the equa-
tion  by the same method.

Figure 4: The sum  with , .

Consider the sum  when  and , then
. The arguments  are shown in Figure 4.

The arguments  are transreal and positive so they lie at
angle zero. Therefore (A3) operates on the “otherwise” clause,
with  and . The arguments’ radii are
given by  and .

We compute the transreal sum  and
carry out the geometrical construction in the resultant common
plane at . Now  so that .
Then:

 (12)

 (13)

(14)

(15)

We have now computed  in the common plane. We then
dilatate it to its final length as:

(16)

We then calculate the final angle independently of the final
length as:

(17)
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The final vector is shown at  which, in this particular case,
lies in the common plane at infinity.

Subtraction is obtained as the addition of a negative number
but there is no negative axis at angle nullity, by construction and
by derivation:

 (19)

 (20)

(21)

Thus the transcomplex top, or equivalently the transcomplex
wheel, manifests signed arithmetic and the transcomplex whip,
or equivalently the transcomplex axle, manifests unsigned arith-
metic. In physical problems, motions are generally computed in
the wheel and energies in the axle.

4 Discussion
Some of the work of this paper is done in the introduction where
we define trans-floating-point arithmetic. This arithmetic is irre-
dundant – every bit pattern describes a unique transreal number.
By contrast, IEEE floating-point arithmetic3, 4 wastes a great
many states. Taking  as the number of bits in the mantissa,
there are  signed NaN states, only half
of which are distinguished by the standard, and only two of
which must be implemented. The term, +1, in the exponent, aris-
es from the sign bit; the term, -2, arises from the two signed in-
finities. The number of wasted states is tabulated below, using
the nomenclature of the 2008 version of the standard.4

Table 1: Wasted NaN states.

If these wasted states are instead assigned to real numbers and
the floating-point exponent’s bias is kept constant then we al-
most double the range of real numbers described by the floating-
point bits. But if we decrement the bias we improve accuracy by
delaying underflow to denormal floating-point numbers near ze-
ro. Thus, an evolutionary improvement is made to floating-point
arithmetic.

Trans-floating-point arithmetic discards the unordered rela-
tional operator, ?, given by the standard. This greatly simplifies
the implementation of order tests in programs. This reduces the
cognitive load on programmers, making it more likely that their

programs will work correctly. It also reduces the number of con-
ditions which must be tested to verify a program. In contrast to
their IEEE 754 counterparts, the transreal relations less-than,
equal-to and greater-than have no exceptions so they cannot
cause a program to crash. Thus trans-floating-point programs are
safer than IEEE 754 floating-point programs for both psycho-
logical and hardware reasons.

The tutorial on transreal arithmetic is offered both as an ex-
ample of how arithmetic might be taught in schools and as an aid
to the researcher. The transcomplex numbers offer many ave-
nues for future research: we maintain that they have better con-
tinuity than any other system of complex numbers; they are total
so they have no need for compactifications; they allow the eval-
uation of physical functions exactly at a singularity; they support
both signed and unsigned arithmetic; they contain all previously
described, complex number systems as special cases.

5 Conclusion
We have given a tutorial on transreal arithmetic which is acces-
sible to school children. We have introduced an irredundant
trans-floating-point arithmetic, essentially by abolishing NaNs
and the unordered relational operator. We have extended com-
plex arithmetic so that it allows division by zero. We have pro-
posed to build massively pipelined machines by exploiting the
absence of exceptions in transarithmetics.
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Appendix - Transcomplex Operations
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(A3)

(A4)
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