
Perspex Machine IV: Spatial Properties of Computation

AI has its many debates about the nature of computation, about the role of symbols and analog 
signals, about the relationship between the physical world and computational representations. 
The perspex machine aims to cut through the Gordian knot of these debates by combining 
geometry with computation, and relating these directly to the world. This provides, at least, a 
virtual machine that can exploit the geometrical properties of any computation, and which gives 
quantitative predictions about how the geometry of space limits any form of symbolic 
computation. This is a radical departure for AI in which all computations are spatial. It throws 
up new ways of computing things, and challenges accepted ideas about computation.

The perspex machine arose from the unification of the Turing machine with projective 
geometry.{{{2}}} In essence, certain geometrical objects were identified with the program tape 
and the states of a finite state machine, and certain geometrical transformations were identified 
with the operations of the Turing machine. This gave a constructive proof of how to make a 
Turing machine out of geometrical stuff.

The constructive proof guarantees that any Turing program can be compiled into a neural 
network. A C source to perspex compiler has been implemented in Pop11. The compiler does a 
lexical analysis of the C source, performs a recursive descent parse, then generates perspexes 
that are the data and operations specified by the C source. Initially, the compiler templates for 
data and operations were exactly the templates provided by the constructive proof, but these 
were soon adapted to provide a more convenient implementation of C’s arithmetic operations, 
conditionals, loops, and function call and return.

A compilation of a C implementation of the Fibonacci series has the interesting property that 
the position of one neuron controls the number of Fibonacci terms computed. Thus, an 
important parameter of the program is mapped onto a spatial analogue automatically by the 
compiler. So far, the most complex program that has been compiled into a perspex, neural 
network is a C implementation of Dijkstra’s solution to the Travelling Salesman Problem. The 
C source is about two pages long and the compiled network has about 600 neurons. If the 
compiler were extended to cover the whole of C then it would be possible to compile any C 
source. It would be possible, for example, to compile the whole of Linux into a neural network.

There is a moral here for other researchers. Develop a constructive proof of the equivalence of 
your favourite kind of neural network with the Turing machine then implement it as a compiler. 
At a stroke, this will help AI deliver massive neural networks for use in all manner of software 
applications. This might be useful in itself, but the perspex machine does much more than this.

For a start, the perspex machine corrects a bug in the Turing machine. The Turing machine can 
enter a non-deterministic state where the current symbol on its tape instructs it to enter more 
than one state. In this condition the Turing machine stalls until an external agency, or oracle, 
decides which one state to enter. By contrast, the perspex machine is always deterministic, 
though it can emulate this Turing non-determinism, say, by raising flags to indicate that the 
Turing non-determinism has been encountered. This property of the perspex machine arises 
from the connectivity of geometrical space and its underlying, total arithmetic.{{{1}}} This 
arithmetic can be used on its own to remove division by zero errors from all numerical 
programs, thereby creating safer and more robust software.



There is a moral here, too. If you choose not to use a total arithmetic you leave all of your 
software open to Turing’s bug and risk your code crashing.

More profoundly, the perspex machine maps all Turing computations into geometrical stuff so 
that geometrical operations can be applied to them. For example, programs can be Fourier 
transformed and filtered so that the broadest filter band is a single neuron that approximates an 
entire program, and successively finer bands contain more and more neurons that, ultimately, 
reproduce the original program exactly.{{{4}}} This makes it theoretically possible for a 
compiler to construct global-to-fine processing threads for any Turing program. In other words, 
in theory, global reasoning can be delivered by a compiler that compiles any existing program.

And there are deeper properties too. The Walnut Cake Theorem{{{3}}} shows that, in general, 
when a discrete system approximates a finer discrete or continuous system it does so non-
monotonically. Thus, non-monotonic reasoning is a general property of discrete machines 
operating in spacetime. Of course, monotonic reasoning can be had in certain special cases, but 
these are unrepresentative of the spectrum of computing machines that can exist in spacetime.

There is a great deal more that could be said about the perspex machine, but this must suffice. 
Unifying the Turing machine with geometry has produced a new class of machines, perspex 
machines, that describe the shape and motion of objects in the world in a natural way, one that 
combines symbolic and non-symbolic computation in a single machine, and one which offers 
geometrical methods of computation that are, theoretically, more powerful than the Turing 
machine. Even Turing computable simulations of the perspex machine have surprising 
properties that make it a very powerful virtual machine with many potential applications in AI.

James Anderson, Matthew Spanner, Christopher Kershaw
Computer Science
The University of Reading
E-mail: author@bookofparagon.com
http://www.bookofparagon.com

References

1. J. A. D. W. Anderson Exact Numerical Computation of the Rational General Linear 
Transformations in Vision Geometry X1, Proceedings of SPIE vol. 4794, pp 22-28, 2002.

2. J. A. D. W. Anderson Perspex Machine in Vision Geometry X1, Proceedings of SPIE vol. 
4794, pp 10-21, 2002.

3. J.A.D.W. Anderson, Perspex Machine II: Visualisation in Vision Geometry XIII, Proceedings 
of the SPIE Vol. 5675, i.e., this volume.

4. J. A. D. W. Anderson Perspex Machine III: Continuity Over the Turing Operations in Vision 
Geometry XIII, Proceedings of SPIE vol. 5675, pp 112-123, 2005.


