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Transreal arithmetic received considerable public comment. We briefly review its development, set it in
its proper mathematical context, and give a tutorial which is accessible to the general reader, including
secondary-school children. Building on this introduction, we show that transfloating-point arithmetic is
more efficient and safer than IEEE floating-point arithmetic. Then we define transcomplex numbers as
three-tuples of a transreal radius, cosine, and sine. We show that a careful arrangement of the ordinary
algorithms of complex arithmetic holds for all transcomplex numbers, including those with zero and
non-finite components. An implementation of transreal and transcomplex arithmetic is given as an
online appendix. We apply transarithmetic in several settings throughout the paper. In particular, we use
it to compute gravitational and electrostatic forces at and near a singularity.
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1. Foreword

This paper presents what ought to be a simple mathematical proposition that just as division
by zero develops transreal arithmetic as a proper superset of real arithmetic [1] so division
by zero develops transcomplex arithmetic as a proper superset of complex arithmetic. But
such is the psychological resistance to division by zero – amongst general readers, scientists,
and reviewers – that we must make special efforts to present this work in a palatable way.
Accordingly, we present a longish introduction in which alternative ways of dealing with
division by zero are discussed. It is shown how transreal arithmetic differs from each of
1
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these and how, in some cases, it has properties analogous to earlier methods for dealing with
division by zero. For example, every transreal number is a definite number, but, by analogy
with domain theory [2], the finite numbers can be used to model quantities whose magnitude
and sign are known exactly; positive infinity and negative infinity can be used to model
quantities whose sign is known, but whose magnitude is known only to be large; and nullity
can be used to model quantities where nothing is known about the sign or magnitude of the
quantity. It is a grievous, but common, error to mistake such a model of quantities for the
properties of numbers that are used to construct the model. Later in the paper, we present a
model of finite and non-finite forces whose resultant is computed as a combination of both
topological and arithmetical considerations. Just as in ordinary physics, the properties of
numbers alone are not sufficient to compute a resultant force. We model physical forces as
obeying some mathematical model, such as that implied by a parallelogram rule for vector
addition, in which the addition of physical forces is modelled by the mathematical addition
of vectors, which, in turn, is implemented in terms of arithmetic on numbers. Thus, in the
addition of infinite and nullity forces, we shall arrive at an example of the fact that transreal
arithmetic is a definite arithmetic which can be used to model quantities that are ordinarily
taken to be definite, indefinite, or undefined. But we obtain more. Transreal arithmetic
makes the sums of all forces definite. This permits us to compute definite properties,
whether finite or non-finite, at physical singularities.

Transreal arithmetic is total, which means that every defined operation of the arithmetic
can be applied to any transreal number(s) with the result being a transreal number. Hence,
each step of a computation can be completed, even if a sequence of steps does not converge
to a solution or terminate. Thus, totality has no direct bearing on computability, other than to
remove some error states which complicate the analysis of a program implemented in a
partial arithmetic. Ordinary real and complex arithmetics are partial because division by
zero is not supported.

In general, a transreal algorithm lays out a finite number of computational paths that
identify all of the elements of a solution set which classify all of the finite, infinite, and
nullity solutions. The algorithm then evaluates each of these paths and, if a best answer is
wanted, selects the one with the highest information content. In many problems, finite
numbers convey more information than infinite numbers which, in turn, convey more
information than nullity. But this is not a universal rule; it is possible to construct abstract
situations in which any particular transreal number has the highest information content. The
issue is that transreal arithmetic is total so it can carry out computations at every step of a
computational path, but it is up to the user of the arithmetic to chose which path is wanted.
That choice may be formalised in an algorithm or may be left entirely to the user.

After the introduction, we present a tutorial on transreal arithmetic which is so simple
that it has been used, successfully, with secondary-school children. It should not present the
reader with any difficulty; but the reader must practice the arithmetic sufficiently to
internalise it, otherwise it will not be possible to follow the proofs given later in the paper. In
our experience, some reviewers are prone to a fault in this regard. Hasty reviewers
sometimes develop an extension of transarithmetic, prove that it leads to a contradiction, and
reject the paper, citing this contradiction. In every case, to date, the reviewers have succeed
only in proving that their own extensions of transarithmetic are faulty – a situation which
might be avoided by an exchange of letters with the author, via a journal’s editor.

We then make IEEE floating-point arithmetic [3] [4] more efficient by replacing the
minus-zero state with the nullity state, by moving the positive and negative infinity states to
the most extreme positive and negative bit patterns, and by replacing all of the  states
with real numbers. This ensures that every binary state encodes a unique number. This
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almost doubles the arithmetical range of real numbers described by the floating-point bits.
We show that IEEE ordering is far more complicated than transreal ordering and argue that
this makes it difficult for programmers to use IEEE arithmetic correctly. In other words, we
hold that IEEE floating-point arithmetic is a risk to the proper operation of both mundane
and safety-critical systems.

We then define that a transcomplex number is a three-tuple, , of a transreal
radius, , being the Euclidean transmetric [5] of a vector in our extended-complex plane or
on the axle at angle nullity, where  and  are, respectively, the transreal sine and transreal
cosine [6] this vector makes with the positive transreal axis. The ordinary extended-complex
plane is the complex plane augmented with a single point at infinity, whereas our extended-
complex plane is further extended by a circle of points at infinite radius and finite angle.
Thus, our extended-complex plane is a proper superset of the ordinary extended-complex
plane. We then define the operations of addition, subtraction, multiplication, and division on
these three-tuples. Various ordinary forms of complex numbers are bijective with a proper
subset of the three-tuples, as can be seen immediately. With the usual notation, [7] [8],
Cartesian-complex numbers, , are given by  with  on the real axis and  on
the imaginary axis; polar-complex numbers, , in the principal range, , are

given by ; Eulerian-complex numbers, , in the same principal
range, are given by , where  is the complex unit, , in three-tuple form;
and Riemannian-complex numbers, being all of the Cartesian-complex or polar-complex or
Eulerian-complex numbers in the complex plane, augmented with complex infinity, arise
from projection of the Riemann sphere, [8] [9] [10], and are described by the corresponding
transcomplex numbers, with the point at infinite radius and nullity angle, ,
replacing the ordinary complex infinity. We prove that where the operations of addition,
subtraction, multiplication, and division are defined on these ordinary forms, they produce
the same result as mapping the ordinary form to three-tuples, performing three-tuple
arithmetic, and mapping the result back to the ordinary form. In this sense, transcomplex
arithmetic is a universal complex arithmetic which contains all of the ordinary complex
arithmetics as proper subsets. We then present preliminary results on the transcomplex
exponential and transcomplex logarithm, and use these to define the transcomplex operation
of raising an arbitrary transcomplex number to the power of an arbitrary transcomplex

number. In particular, we can evaluate  and  as definite transnumbers for any
transcomplex power, , including zero.

We show that transcomplex arithmetic supports a superset of the Riemann sphere which
is extended by the inclusion of an axle and a circle. The axle passes through the ‘north’ pole
of the sphere and terminates on the centre of the sphere. This axle projects onto the axle at
angle nullity. The circle is centred on the north pole and lies in a plane parallel to the
complex plane. This circle, with unit diameter, projects onto the circle at infinity or rim at
infinity. The axle has two isolated points on it: the north pole and the southern pole-star. The
pole star lies at unit distance below the origin and projects onto the point at nullity [11]. The
axle supports unsigned arithmetic, while signed arithmetic is supported by the circle,
together with the sphere, but excluding its north pole. Ordinarily, the north pole of the
Riemann sphere maps to a special, non numerical, object called complex infinity, which
models all points at infinite radius, regardless of angle. In our model the north pole maps to

 which is the unique point at infinite radius and non-finite angle. All of the points

, with real  and  such that , are points at infinite radius and finite
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angle, which make up the circle at infinity. Hence, complex analysis may be extended to
model functions whose modulus grows monotonically with no real bound, and whose angle
either does, , or does not, , converge to a finite angle. This introduces new
convergence results and makes transcomplex analysis a proper superset of transreal analysis.
By contrast, ordinary complex analysis is not a superset of real analysis, because real
analysis has infinite limits of and approaching one of exactly two signed infinities, but
complex analysis has infinite limits of and approaching exactly one unsigned infinity. It
would be interesting to know if any of the new convergence results, or the geometrical
unification of signed and unsigned arithmetics, are useful in mathematical physics.

In the tutorial we show how to use transarithmetic to evaluate equations in Newtonian
physics. We have examined Newton in translation [12] [13] and have checked diagrams in
an original [14]. Analogously to Newton’s first law of motion, we say that, “Every body
perseveres in its state of being at rest or of moving uniformly straight forward, except
insofar as it is compelled to change its state by non-zero and non-nullity forces impressed.”
Compare with [12] p. 416. Analogously to the second law, we say that, “A change in motion
is given by any or all of the satisfied equations , ,  and takes
place along the straight line in which a force is impressed.” Here the equations use transreal
or transcomplex variables in an elementary notation and are readily extended to Newton’s,
or modern, differential form. This statement is a very considerable departure from Newton’s
original law, [12] p. 416, but is a lesser departure from the corpus of physics Newton
presents [12] [15]. It is notable that Newton does much of his work in proportions (unsigned
ratios). This follows the ancient Greek practice of representing quantities by proportions. It
also has the advantage, for us, that ratios immediately generalise to transnumbers so that
Newton’s statement of physics can be generalised so that it applies to infinite and nullity
quantities. Analogously to the third law, we say, “To any action, , there is always an
opposite and equal reaction, ; in other words, the actions of two bodies upon each other
are always equal and always opposite in direction.” Compare with [12] p. 417. The variable,

, may be transreal or transcomplex. We shall also find that Newton’s statement of the
parallelogram law applies to infinite forces, though modern statements of the law do not.

The reader, who is of a practical bent of mind, will want results of the above sort, where
Newtonian physics is re-cast in transmathematics so that familiar physical equations apply at
singularities. But the reader who is interested in the history of science might appreciate our
demonstration that all of the mathematics in Newton’s Philosophiae Naturalis Principia
Mathematica is extended by transmathematics so that it would be possible to re-write that
work so that all of its results apply at singularities. Transmathematics also extends the
methods of proportions given in Euclid’s Elements. As transmathematics extends historical
works in mathematics, it would seem reasonable to suppose that it might have an influence
on the future development of mathematics; and even its mundane results, such as making
floating-point arithmetic more efficient and safer, might influence applications of general-
purpose digital computing.

2. Introduction

The Perspex machine [16] was introduced [17] as a theoretical computer that carries out all
computations geometrically, using transreal co-ordinates. The transreal number nullity, ,
was defined [11] to be the unique number which is zero divided by zero. Thus, . It
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was used to solve certain degenerate geometrical problems [11]. Later, several transreal
arithmetics were developed, starting with [18]. In each case, a set of transreal numbers was
defined, then a careful selection of the established algorithms of real arithmetic was made.
The objective was to retain real arithmetic and to obtain useful properties for the strictly
transreal numbers that are not real. Notions of usefulness varied, but always dealt with
digital computation and, later, with mathematical physics. Each arithmetic was formalised
by giving its multiplication tables. This methodology sets the development of transreal
arithmetic apart from the development of number systems in modern mathematics. Firstly,
the methods used are algorithmic, not axiomatic, and, secondly, the overriding objective is
usefulness, not any aesthetic of pure mathematics. This fundamental development, of
transreal arithmetic, is a product of applied mathematics, specifically of computer science,
not of pure mathematics. Thus, the development of transreal arithmetic reprises the history
of mathematics, to the extent that arithmetic was used to solve practical problems before it
was axiomatised. Indeed, transreal arithmetic provides an alternative history: because it uses
only the algorithms of real arithmetic, it might have been obtained in ancient times, and
might have lead to an earlier axiomatisation of an arithmetic that allows division by zero.
This narrative raises psychological difficulties for some people who are reluctant to accept
that the arithmetical methods they already know, do allow division by zero. In our
experience, children of 12 to 16 years of age have the necessary mathematical preparation to
understand transreal arithmetic and have no psychological inhibitions to their understanding.
Our tutorial on transreal arithmetic is aimed at this group of students, though students at the
younger end of the range will generally require the assistance of an instructor to explain the
text to them. A preferred form of transreal arithmetic was arrived at in [16] which uses two
signed infinities:  and , where . This was
axiomatised in [1], where a machine proof of consistency was given. This proof shows that
transreal arithmetic is consistent if real arithmetic is. But, at the time of writing, no proof of
the consistency of real arithmetic is known. After this paper was accepted for publication,
and a pre-print was published on the World Wide Web, the BBC reported the development of
transreal arithmetic. These reports attracted considerable public comment.

Subsequently, the topology of transreal numbers was developed [5]. It was recognised
that nullity and the infinities are non-finite numbers, in contrast to the real numbers, each of
which is a finite number. The methodology for developing transreal arithmetic was then used
to develop transcomplex arithmetics. In each case, a set of transcomplex numbers was
defined, then a careful selection of the established algorithms of complex arithmetic was
made which applied to all of the transcomplex numbers. Later, a geometrical construction
was found which justified this choice. In the current paper, transcomplex numbers are
defined as three tuples, , where the radius, , is the Euclidean transmetric [5] of a
transcomplex vector; and  and  are, respectively, the transreal cosines and sines [6] this
transcomplex vector makes with the transreal -axis. Transcomplex arithmetic unifies and
contains: the whole of Cartesian-complex arithmetic, both polar-complex and Eulerian-
complex arithmetics in the principle range of angles, arithmetic on Riemannian-complex
numbers, and both transreal and real arithmetics. In this sense it is a universal complex
arithmetic which can stand in for any of the established complex arithmetics. But, just like
transreal arithmetic, this raises psychological difficulties for some people who are reluctant
to accept that the methods of complex arithmetic they already know, do allow division by
zero and do, therefore, operate at singularities. These psychological difficulties are
symptomatic of the fact that the transarithmetics result from the acceptance of a new
number, nullity, and a paradigm shift in the application of the accepted methods of
arithmetic.

∞  =  1 0⁄   k 0⁄≡ ∞–   =  1– 0⁄   k– 0⁄≡ k 0>

r c s, ,( ) r
c s

x

5



In the week following the BBC broadcasts, there were 40 000 downloads of the axioms
paper [1]. Within three weeks, Google reported 100 000 web pages relating to transreal
arithmetic, and the arithmetic was reported by journalists from several nations. Within this
period, 1 000 people corresponded with the author, of whom 100 asked technical questions.
These questions were answered individually, in the published version of [1], and in [5]. The
present paper gives answers to the remaining technical questions so that the general public
now has a detailed, but not necessarily definitive, answer to all of the questions asked.

It is unusual to promote the public understanding of science in a technical paper, but
such is the level of interest in the topic of division by zero that it seems reasonable to use this
introduction to deal with popular questions, in addition to technical ones. When dealing with
any question we employ the Principle of Charity [19]. That is, we make the best argument
we can for the questioner and explore the improved question so as to obtain as much
information as possible about the matter in hand. Sometimes this leads to a clearer
understanding of each party’s position and, sometimes, it leads to a scientific advance. Such
is the case here, where a thorough answer to a question about floating-point arithmetic,
results in a more efficient and safer interpretation of floating-point bits. We shall come to
that presently, but we begin with a more fundamental question.

It has been asked if nullity is identical to undefined. In order to give a meaningful
answer to this question, we propose various definitions of undefined and then answer the
question in these terms. This might satisfy the questioner or it might be that the questioner
had in mind a different definition than the ones we consider here or, after reading our
answers, the questioner might arrive at new questions, in which case a discussion between us
will be needed to advance our mutual understanding. Let us now turn to the question posed.

If undefined is the same as not being defined then the answer, to this question, is straight
forward: nullity has a definition, it is defined to be the unique number which is zero divided
by zero, so it is not undefined. This is not a trite answer, we can use the definition of nullity,
together with the operations of transreal arithmetic, to obtain arithmetical solutions where
ordinary arithmetic cannot. For example, the following are undefined formulae in real

arithmetic: , , , , . But, by definition, we have  and, using
the methods of transreal or transcomplex arithmetic, presented in this paper, we compute the

following identity: . But we also compute , whence
. In other words, some undefined formulae evaluate to nullity and some evaluate

to an infinity. Therefore, it is impossible that nullity is equal to all undefined formulae. (All
of the numerical examples in this journal paper are evaluated in the software package that is
included as an on-line appendix. The examples just given appear as test_1 in the on-line
appendix and are evaluated, by hand, later in the paper.)

If undefined is the same as not being able to begin a computation then we have already
answered the question. The above formulae cannot be computed in real arithmetic. In some
cases, the formulae cannot even be stated in real arithmetic, because they involve the infinity
symbol, , which is undefined in real arithmetic. These formulae are  and . In
two cases, the formulae involve only real numbers, but are still undefined. These formulae

are  and . In the latter case, we can try to evaluate the formula: .

But the term  in  is undefined, and  is also undefined. Thus, when using real
arithmetic, we can neither begin the computation nor take any steps in evaluating it.
However, we can evaluate all of these formulae in transarithmetic. As stated above, we

obtain  and  so, again, some undefined formulae
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evaluate to nullity and some evaluate to an infinity. Therefore, it is impossible that nullity is
equal to all formulae that are undefined.

For the reader’s benefit, we evaluate all of the above formulae later in the paper. See
Equations (5), (10). But let us now pursue the question of computability on the assumption
that the initial formulae can be stated in a way that allows a computation to begin.

If undefined is the same as incomputable then we turn to Kleene for an analysis of the
logic of computability. Kleene develops a logic of undefined computations in his treatise on
metamathematics [20]. In this text, Kleene employs the concept of an object language that is
analysed from the point of view of an observer language. He also gives a definition, [20] ch
XII, of undefined. This definition is the strongest possible that contains the whole of
Boolean logic – the fundamental logic of truthfulness and falsehood that is used in
establishing the foundations of mathematics and computer science. Kleene states his
definitions in terms of Turing machines and their equivalents, but his argument holds for
some stronger machines [21] and all weaker ones. In this latter case, it holds for all of
today’s digital electronic computers. In Kleene’s logic: true (T) means that a computer has
determined that a sentence has the truth value T; false (F) means that a computer has
determined that a sentence has the truth value F; and undefined (U) means that a computer
has not yet determined whether the truth value of a sentence is T or else F – indeed, it will
never do so if the sentence is incomputable in the current model of computation, here Turing
computation and its equivalents.

We illustrate Kleene’s argument with his truth table, [20] page 334, for the logical
disjunction, or, as shown in Table 1, above. Consider the sentence “a or b.” If either or both
of a, b are true then the sentence is true. This is shown in the first row and column in the
body of the table. In particular, notice that the element in the first row and third column, in
the body of the table, says that the sentence is true when a is true and b is undefined. As
Kleene argues, all that is needed for the disjunction to be true is that one of a, b is true – it is
irrelevant whether the other is true, false, or undefined. The element in the second row and
second column, in the body of the table, says that the sentence is false if both a, b are false.
The remaining entries, in the body of the table, are all undefined, because there is no
evidence available to the computer that any of a, b is true. Kleene states that this is the
strongest possible interpretation of undefined that contains the whole of Boolean logic. The
Boolean terms are shown in the top-left, two by two, block of elements in the body of the
table. Kleene’s definition of undefined can be weakened by changing any T, in the body of
the table, to an F or a U, and by changing any F, in the body of the table, to a U. But if any
element in the top-left, two by two, block is changed then the definition of undefined does
not contain the whole of Boolean logic.

Returning to the question: if undefined in the object language of transreal arithmetic,
means that U is identical to , then the question is vacuous. Nullity, is not a truth value. It is
the wrong type of mathematical object to appear in a truth table. But suppose that we adopt
Kleene’s logic in an observer language and ask if , in the observed language, behaves such

Table 1: Kleene’s truth table for the logical disjunction, or.

or T F U

T T T T

F T F U

U T U U

Φ

Φ
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that “a op b” is identical to Kleene’s table when op is some, particular, binary operation of
transreal arithmetic that is substituted for or, and where  is substituted for U. On
consulting [1] we find that all transreal operations involving  produce  as a result.
Therefore, it is impossible for us to find any sentences of the form “  op ” or “  op

,” where , so we cannot match the entries “U or T T” or “T or U T” in
Kleene’s table. Consequently, nullity is not identical to Kleene’s notion of undefined in the
language of transreal arithmetic, nor in any meta language obtained by a simple substitution
of terms. But we could use a complicated substitution of terms. We could Gödelise the
axioms of transreal arithmetic, encode all of Kleene’s tables with an arbitrary substitution of
terms, and supply a machine to evaluate sentences in the Gödelised arithmetic. But this is
completely arbitrary. We could just as well encode 42 as undefined. And we would have to
add a machine to the transarithmetics, thereby creating yet another formal system. (We do
not want to add an arbitrary machine to the transarithmetics, because we are already
committed to adding the Perspex machine to these arithmetics). We summarise this by
saying that there is no non-arbitrary way to make Kleene’s notion of undefined identical to
transreal nullity.

If we weaken Kleene’s notion of undefined, in any of the ways we have identified, then
we end up with a logic that does not contain the whole of Boolean logic or which forbids one
or both of the simplifications “U or T T,” “T or U T.” But Boolean logic is used
universally in digital computers. And, in almost all computer languages, the simplifications
“U or T T,” “T or U T” are used to terminate evaluation of a logical sentence, without
evaluating all of the terms in the sentence, as soon as the sentence’s truth value is known. So,
if we take nullity as identical to a weak notion of undefined then we must give up Boolean
logic or modify the most common strategy for evaluating logical sentences in a computer.
We are free to do this, providing we are willing to live by the consequences of doing it. We
acknowledge, therefore, that nullity could have all the properties of undefined if we are
willing to accept a departure from the ordinary practice of computation. But note, carefully,
that we rebut the suggestion that nullity can be taken identical to undefined, because nullity
has some additional properties that none of the definitions of undefined has. We present two
such properties later, thereby refuting the suggestion that nullity is undefined.

If undefined is the same as bottom type then we delve deeper into the recent history of
mathematics. Kleene’s work on computability was preceded by Russell’s work on type
theory. Russell developed a relative hierarchy of types with the freedom to choose the first
type arbitrarily. Whitehead and Russell used this theory in the development of mathematics
from its logical foundations [22]. Today, type hierarchies are used in the design of computer
languages [23]. In modern type theory, there is a bottom type which is a subtype of every
other type. For example, the bottom type is a subtype of the type number and of every other
type, whether mathematical or not. In particular, it is a subtype of the type goldfish riding a
unicycle. Now, nullity is the unique number which is zero divided by zero, written in
transreal or transcomplex form, and in any other forms yet to be developed. Nullity is of the
type number, but it is not itself a type. In particular, nullity is not a subtype of goldfish riding
a unicycle. Therefore, nullity is not identical to the bottom type. (And it stretches Charity to
the extreme to allow that a technically competent person could believe otherwise.)

If undefined is the same as bottom element then we move closer to the present day in the
history of mathematics. Kleene’s work on computability was succeeded by Scott’s work on
denotational semantics [2]. This is an observer language that uses a bottom element which
means that nothing is known about a computation. We are free to develop applications of
denotational semantics in which the bottom element is as strong as, or weaker than, Kleene’s

Φ
Φ Φ

Φ b c→ a
Φ c→ c Φ≠  →  →

 →  →

 →  →
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undefined. If we use a bottom element as strong as Kleene’s undefined, then the above
analysis applies and we hold that nullity is distinct from the bottom element, but we
acknowledge that nullity has all of the properties of the bottom element, if we are willing to
accept a departure from the practice of ordinary computation. Now, let us examine
applications of the bottom element that are weaker than Kleene’s undefined. The bottom
element can be used so that when it is combined with any element of the observer language
of denotational semantics, it results in the bottom element. This is the same behaviour as
when nullity is combined with any element in the observed language of transreal arithmetic.
We could, therefore, find a translation of these transreal operations into denotational
semantics. Hence, we are free to read nullity as the bottom element. For example, if we
consider the set of extended-real numbers, made up of the real numbers augmented with the
transreal infinities, then a result of nullity means that nothing is known about the extended-
real result of a computation. But we are equally free to accept nullity as a known value and
operate on the whole set of transreal numbers so that every terminating computation
produces a known result. We summarise this position by saying that we are free to read
nullity as having all of the properties of the weakest reading of the bottom element that we
have considered, but we are equally free to read nullity as a known number. Whichever case
we choose, nullity is distinct from the bottom element because it has properties that the
bottom element does not have.

We now present two arithmetical properties which nullity possesses, but which are not
possessed by any of the definitions of undefined that we have considered. Recall that nullity
is defined to be the unique number that is zero divided by zero. Consequently, nullity has a
numerator of zero and a denominator of zero. By contrast, the numerator of undefined is
undefined and the denominator of undefined is undefined. But zero is not equal to
undefined. Therefore, nullity and undefined are not identical. As a second example, consider
the search for a number which is greater than zero and less than zero. There is no such
number in real or transreal arithmetic, but on any of the above readings we say that this
target number is undefined. If we now suppose that undefined is identical with nullity we get
a contradiction. The axiom of quadrachotomy, axiom [A30] in [1], states, as two of its four
cases, that nullity is not less than zero and is not greater than zero. Hence, nullity cannot be a
number which is less than zero and greater than zero. Therefore, nullity and undefined are
not identical. In conclusion, nullity is a number with numerical properties that are distinct
from any definition of undefined that we have considered.

We summarise the whole of this argument by saying that nullity is a unique number and
is not identical to undefined; nonetheless nullity can be used to model undefined in various
circumstances. For example, in computer algebra or theorem proving software, we would be
happy to describe undefined results by the empty set, but in the design of an electronic
Perspex machine, we do not want the architectural overhead of describing undefined terms
by a set. Instead, we describe these terms by the number nullity. For example, the transreal
logarithm [3] has  as a consequence of evaluating the power series 
and, where the real logarithm, , is undefined, on , the transreal logarithm is
defined to have  on . This totalises the transreal logarithm so that it can
be applied to any transreal , with the result being a transreal number. We may then choose
how to treat . We may choose to treat  as everywhere undefined so that

 is undefined whenever . Alternatively, we may classify the computational
paths that lead up to the computation of any particular instantiation of  into two
classes: first, those that lead to an exact result in the case  and, second, those that lead
to an otherwise undefined result in the case . We may then program an appropriate

Φlog Φ= Φexp Φ=
xlog ∞– x 0< <

xlog Φ= ∞– x≤ 0<
x

xlog Φ= Φ
xlog y= y Φ=

xlog Φ=
x Φ=

∞– x≤ 0<
9



behaviour along each path. For example, we may use the transcomplex logarithm, presented
later, to compute a unique result in every case  or , though the
transcomplex logarithm is itself totalised by . This totalisation does not nullify

the computation of  because there is another computational path, with more
information, that computes a definite result in the circle at infinity. Thus, we can let
computations run, without halting on an exception, unless we want to halt, even where the
function is totalised by a boundary condition. This behaviour is reminiscent of the use of
NaNs in IEEE floating-point arithmetic [3].

It has been asked if nullity is NaN as defined in the IEEE standard for floating-point
arithmetic [3]. The answer is straight forward, nullity is a unique number and the NaNs are a
class of many distinct objects that are, as the acronym says, Not a Number ([3], p. 8). Thus,
nullity differs both quantitatively and qualitatively from the NaNs. But, to be Charitable, we
now examine the differences and, later, come to the conclusion that floating-point arithmetic
is more efficient and safer when it uses the unique number nullity than when it uses the class
of NaNs.

We tabulate, below, a comparison between transreal arithmetic and IEEE floating-point
arithmetic. The left part of the table, headed “Transreal arithmetic,” relates to transreal
arithmetic as axiomatised in [1]. The right part of the table, headed “IEEE floating-point
arithmetic,” relates to floating-point arithmetic as specified in [3]. Note that this standard is
ambiguous so the entries in our table are open to question. We cite the parts of the standard
that support our reading. Both the left and the right parts of the table are subdivided into two
columns. The first column, headed “Return value,” shows the value that an arithmetical
operator returns. The second column, headed “Equality,” describes the behaviour of the,
optional ([3] §5.7), IEEE equality operator. Specifically,  means that the equality
operator, =, returns true, and  means that the equality operator, =, returns false. The
equality and relational operators are discussed later. Within the table, , is one of binary
addition, subtraction, multiplication, or division; and  is an arbitrary transreal or floating-
point number, as the case may be. The square root operator is defined specially in the
standard ([3] § 5.2) and is shown in the table. Finding the integer remainder is also defined in
the standard ([3] § 5.1), but this operation has not been developed in transreal arithmetic so it
is not shown in the table. Notice that transreal arithmetic agrees with IEEE floating-point
arithmetic in the first two rows of the table, but disagrees in the remaining twelve rows. In
particular, every operation involving nullity behaves differently from the corresponding
operation on a NaN.

Transreal arithmetic has a single zero, which is isomorphic with the zero in real,
Cartesian-complex, Eulerian-complex, Riemannian-complex, and transcomplex arithmetic;
but IEEE floating-point arithmetic has two zeros: zero, , and minus zero,  ([3] § 3, 3.2,
5.7). The IEEE zeros are equal, but not identical, and sometimes behave differently. Zero
sums are not shown in the table because their sign depends on the rounding mode in which
IEEE arithmetic is performed ([3] § 4). Transreal arithmetic has a single nullity; but IEEE
floating-point arithmetic has at least two NaNs: a signalling NaN and a quiet NaN ([3] § 3,
6.2). Quiet NaNs should carry diagnostic information so a resultant NaN can sometimes be
different from an argument NaN ([3] § 6.2). Transreal arithmetic is reflexive, which is to say
that  for all numbers . Similarly, real, Cartesian-complex, polar-complex, Eulerian-
complex, Riemannian-complex, and transcomplex arithmetics are all reflexive; but IEEE
floating-point arithmetic is nonreflexive, it has  for all  ([3] § 5.7). In IEEE
arithmetic, the signs of products and quotients are the exclusive or of the signs of their
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arguments ([3] § 6.3). This creates a variety of signed results so that the right-hand part of
the table has many more entries than the left-hand part. This demonstrates that IEEE
arithmetic is different from, and is far more complicated than, transreal arithmetic.

Table 2: Comparison of transreal and IEEE floating-point arithmetical operators.

Transreal arithmetic IEEE floating-point arithmetic

Return value Equality Return value Equality

0 0→– 0– 0= 0 0–→– 0– 0=

∞ ∞–→– ∞– ∞–= ∞ ∞–→– ∞– ∞–=

Φ Φ→– Φ– Φ= NaNi NaNj→– NaNi NaNj≠–

x  op  Φ Φ→
Φ  op  x Φ→

x  op  Φ Φ=
Φ  op  x Φ=

x  op  NaNi NaNj→
NaNi  op  x NaNj→

x  op  NaNi NaNj≠
NaNi  op  x NaNj≠

0 0→ 0 0= 0 0→ 0 0– 0= =

0– 0→ 0– 0= 0– 0–→ 0– 0– 0= =

0 1÷ 0→ 0 1÷ 0= 0 1÷ 0→
0–( ) 1–( )÷ 0→

0 1÷ 0– 0= =
0–( ) 1–( )÷ 0– 0= =

0 1–( )÷ 0→ 0 1–( )÷ 0= 0 1–( )÷ 0–→
0–( ) 1÷ 0–→

0 1–( )÷ 0– 0= =
0–( ) 1÷ 0– 0= =

1 0÷ ∞→ 1 0÷ ∞= 1 0÷ ∞→
1–( ) 0–( )÷ ∞→

1 0÷ ∞=
1–( ) 0–( )÷ ∞=

1 0÷– ∞–→ 1 0÷– ∞–= 1 0÷– ∞–→
1 0–( )÷ ∞–→

1 0÷– ∞–=
1 0–( )÷ ∞–=

0 0÷ Φ→ 0 0÷ Φ= 0 0÷ NaNi→
0–( ) 0÷ NaNi→

0 0–( )÷ NaNi→
0–( ) 0–( )÷ NaNi→

0 0÷ NaNi≠
0–( ) 0÷ NaNi≠

0 0–( )÷ NaNi≠
0–( ) 0–( )÷ NaNi≠

∞ ∞÷ Φ→
∞–( ) ∞÷ Φ→

∞ ∞–( )÷ Φ→
∞–( ) ∞–( )÷ Φ→

∞ ∞÷ Φ=
∞–( ) ∞÷ Φ=

∞ ∞–( )÷ Φ=
∞–( ) ∞–( )÷ Φ=

∞ ∞÷ NaNi→
∞–( ) ∞÷ NaNi→

∞ ∞–( )÷ NaNi→
∞–( ) ∞–( )÷ NaNi→

∞ ∞÷ NaNi≠
∞–( ) ∞÷ NaNi≠

∞ ∞–( )÷ NaNi≠
∞–( ) ∞–( )÷ NaNi≠

∞ 0× Φ→
∞–( ) 0× Φ→

0 ∞× Φ→
0 ∞–( )× Φ→

∞ 0× Φ=
∞–( ) 0× Φ=

0 ∞× Φ=
0 ∞–( )× Φ=

∞ 0× NaNi→
∞ 0–( )× NaNi→

∞–( ) 0× NaNi→
∞–( ) 0–( )× NaNi→

0 ∞× NaNi→
0–( ) ∞× NaNi→

0 ∞–( )× NaNi→
0–( ) ∞–( )× NaNi→

∞ 0× NaNi≠
∞ 0–( )× NaNi≠

∞–( ) 0× NaNi≠
∞–( ) 0–( )× NaNi≠

0 ∞× NaNi≠
0–( ) ∞× NaNi≠

0 ∞–( )× NaNi≠
0–( ) ∞–( )× NaNi≠

∞ ∞– Φ→ ∞ ∞– Φ= ∞ ∞– NaNi→ ∞ ∞ NaNi≠–
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It has been asked how transarithmetic relates to the Riemann sphere. In general,
stereographic projection [9] is the projection of a 3D sphere onto a 2D plane that is tangent
to the sphere, or parallel to a plane that is tangent to the sphere. Neumann ([10] foreword p.
vi, first footnote) credits the invention of stereographic projection of complex variables to
Riemann, and develops a two-sheet representation of it ([10], fourth lecture, pp 131-161).
Today, a 3D sphere is called Riemann if it is subjected to a stereographic projection that
uniquely carries each point of the sphere, except the projection point at the ‘north’ pole, onto
each point of the complex plane, and which carries the north pole onto a unique point that is
not complex, but which lies at an infinite distance from the sphere. In modern parlance, this
non-complex point is called complex infinity. It is important to note that, in many
developments, this point is not assumed to have any properties, other than being infinitely
distant from the projection point at the north pole of the sphere. For example, complex
infinity is not a complex number, does not have a real or imaginary component, and is not
assumed to lie at any specific orientation with respect to, say, the Cartesian-complex co-
ordinate-frame. We are perfectly free to take complex infinity identical to undefined. In
particular, we may take it to be an actual goldfish riding a unicycle, providing this unlikely
object is infinitely distant from the projection point at the north pole of the sphere. All
geometrical and topological proofs on the Riemann sphere then go through unaltered. The
reader might, therefore, conclude that it is pointless to delve into the internal structure of
complex infinity. After all, who cares how a goldfish rides a unicycle or what diameter the
wheel is? But stereographic projection can be defined trigonometrically. When these
equations are evaluated using transreal or transcomplex arithmetic they can be evaluated
everywhere, including at the north pole. Later in the paper, we show that the north pole
projects to a point which is infinitely distant at an angle of nullity to the Cartesian-complex
co-ordinate frame. The transcomplex structure also has additional parts. It has an axle,
which is the non-negative part of the transreal number line, and it has a (unit) circle lying in
the plane which contains the north pole and is parallel to the Cartesian-complex (projection)
plane. The axle encodes all points that are at a non-negative distance at an angle of nullity,
and the circle encodes all points at an infinite distance that lie at a finite (real) angle. Thus,
the Riemann sphere is identical to the sphere in the transcomplex case and its projection onto
the complex plane is identical. But, in the ordinary complex case the projection of the north
pole is not a complex number, whereas in the transcomplex case its projection is a
transcomplex number. Thus, projection of the north pole is better behaved in the
transcomplex case. The transcomplex case also has additional structure, an axle at angle
nullity and a circle at infinity, which the Riemann sphere does not have.

It has been asked if transreal arithmetic is identical to the arithmetic in Beeson and
Wiedijk’s work on limits in real calculus [24]. The answer is straight forward: a calculus of
limits is not any kind of arithmetic. But let us be Charitable and compare functions that map
a transreal number onto a transreal number with whatever kind of mappings Beeson and
Wiedijk consider, and let us compare transreal limits [5] with whatever limits they consider.
Beeson and Wiedijk construct limits using filters on open sets. In transreal arithmetic ,

 and  are closed sets [5], not open sets, so the filter treatment is fundamentally
incompatible with transreal arithmetic and transreal calculus. Beeson and Wiedijk explicitly
reject the use of ultra filters which would have allowed a direct comparison with our
approach. But let us be Charitable and stick to our plan for comparing the systems. Their
positive infinity, , is a fixed value with the property . This is the same as
transreal infinity. They also have a negative infinity, , just as transreal arithmetic has.
Thus, both approaches agree that  for all real numbers . However, almost all of

∞–{ }
∞{ } Φ{ }

∞ ∞ 1+ ∞=
∞–

∞ r ∞< <– r
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their operations on infinities produce results which are different from transreal arithmetic.
Firstly, a case that produces the same result. They find that . This agrees

with the transreal value of the function  and with the transreal limit [5]. But,
they find a limit, , where transreal arithmetic evaluates the function as

 and, in this case, the transreal limit does not exist. Note that it is
possible to have a transreal limit of nullity, thus  when  is a constant

function in a neighbourhood around . See [5] for details. In summary, Beeson and Wiedijk
produces results that are fundamentally different from ours. Their approach is more
complicated, both in the mathematical techniques used and in the variety of results obtained.
We maintain that transreal arithmetic is the simplest possible arithmetic which makes real
arithmetic total, so that every arithmetical operation applies to any numbers with the result
being a number, and which retains all of the positive results of real calculus. The
preservation of the positive results of calculus arises from a topological property. The
transreal infinities and nullity have epsilon neighbourhoods evaluated in transreal
arithmetic. This arithmetic forces these three, non-finite, points to be path-disconnected
from the real numbers [5]. If we attempt to construct any negative example of a limit that is
contradictory at a non-finite position or value then we simply note the discontinuity and
discard the counter example. On the other hand, if we construct a positive example that does
hold at a non-finite position or value then we simply assert that this particular function is
continuous at these positions or values. For example, in [6], the transreal exponential is
taken to be continuous at , but discontinuous at . Quite simply, the topology of
transreal numbers, which follows directly from their arithmetical properties, gives us the
freedom to accept or reject any non-finite result of real calculus.

It has been asked if transreal arithmetic is identical to any of Carlström’s infinite class
of arithmetics, each or which allows division by zero [25], and, specifically, if Carlström’s
number  is identical to transreal . This is a good question. Carlström
makes various arithmetics, of semi-rings, total by introducing a reciprocal which is a
generalisation of the ordinary reciprocal of rational numbers. Carlström’s reciprocal [25] is
the same as ours [1], but he uses a different equivalence relation, and different addition and
distributivity, which give different arithmetics, all of which are unordered. One can tell if
two of Carlström’s numbers are equal, but otherwise one cannot have a binary operator
which can tell which is the larger number and which is the smaller. Ordering is an important
property in practical calculation, including mathematical physics, so Carlström’s approach is
not readily usable in these applications. As a simple example, imagine the task of weighing
out one pound of flour to bake a walnut cake. If the baker shakes exactly one pound of flour
into one pan of a balance, with a one pound weight in the other pan, then the baker can see
that the scale is balanced; but if the baker puts too much, or too little, flour into the weighing
pan then the baker can see that the scale is not balanced, but cannot tell which pan is higher
or lower than the other and by what amount. Therefore, the baker cannot estimate how close
to the correct weight the flour is, and cannot tell whether to add more flour, or take some out,
in order to balance the scale. The physics of such a universe would be hostile in the extreme.
No living thing would be able to have any kind of homeostasis, maintaining its temperature,
air intake, or whatever. By contrast, transreal arithmetic does have the usual range of
relational operators which are based on the fundamental relationships of equality and
greater-than [1] [5]. Thus, transreal arithmetic is very different from any of Carlström’s
arithmetics. As to the second part of the question, note that the zeros is Carlström’s number

1 x 1+( )⁄( )
x ∞→
lim 0=

1 ∞ 1+( )⁄ 0=
x 1 x⁄( )sin( )

x 0→
lim 0=

0 1 0⁄( )sin× 0 Φ× Φ= =
f x( )

x a→
lim Φ= f x( ) Φ=

a

∞± Φ

⊥ 0 0⁄= Φ 0 0⁄=
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 are zeros of a semi-ring, whereas the zeros in transreal  are zeros of an
ordered field (specifically, zeros of the real numbers). Therefore, transreal  has more
algebraic structure than Carlström’s  and is a different number.

It has been asked how to find the non-integral powers of minus infinity. The answer to
this question occasioned the development of all of the unpublished transcomplex arithmetics
and of the transcomplex arithmetic given in this paper.

We hope we have now demonstrated, to both the general reader and the specialist, that
transreal arithmetic is different from other methods for handling division by zero. We
maintain that transreal arithmetic is the most useful method for dividing by zero because it
uses only pre-existing algorithms of real arithmetic and, thereby, extends the whole of
mathematics, computation, and physics in a natural way. We illustrate this, next, with a
tutorial, the first part of which has been used, successfully, with secondary school children.
This tutorial concludes with a calculation of gravitational and electrostatic singularities by
evaluating Newtonian physics with transreal arithmetic. After the tutorial, we show that
IEEE floating-point arithmetic can be made more efficient by substituting nullity for minus
zero, by re-positioning the codes for positive and negative infinity, and by replacing all of
the NaNs with real numbers. We argue that the resulting transfloating-point arithmetic is
safer because it has simpler semantics which make it easier to implement programs and to
test them. We examine the use of proportions in Newton’s Philosophiae Naturalis Principia
Mathematica and in Euclid’s Elements. We then introduce the transcomplex numbers and
the operations of transcomplex addition, subtraction, multiplication and division. We prove
that transcomplex arithmetic contains transreal arithmetic and several ordinary varieties of
complex arithmetic. We discuss transcomplex power series, in general, and the transcomplex
exponential, in particular. We discuss the transcomplex logarithm. We use the transcomplex
exponential and logarithm to define the transcomplex operation of rasing a transcomplex
number to a transcomplex power. We discuss the transcomplex Riemann sphere. Finally, we
discuss practical applications of transcomplex arithmetic, consider possible future
developments, and conclude with a brief summary of what has been achieved in this paper.

3. Tutorial

Transreal arithmetic was invented in 1997 [11] by applying a careful selection of the
operations of projective geometry to the point at nullity. Over the subsequent decade,
transreal arithmetic was generalised by adding the infinities and making a careful selection
of the ordinary algorithms of arithmetic. This selection was axiomatised in 2007 when a
machine proof of consistency was given[1]. No further proof of the correctness of the
methods is given here. The author has now taught transreal arithmetic to hundreds of people
of many ages. The first part of the tutorial works well with secondary school children when
the instructor takes care to adapt the order of presentation to suit a student’s prior learning
and introduces vocabulary only when it is needed. The mathematical vocabulary used here
echoes that used in primary schools in England and Wales. It provides a foundation for the
introduction of more formal vocabulary. The first part of the tutorial gives the reader the
mathematical tools necessary to follow the later parts of the tutorial and the rest of the paper.
The second part of the tutorial presents one of the original results of the paper. It shows how
to evaluate Newtonian physics using transreal arithmetic to compute the finite resultant
force at a singularity where infinitely attractive gravitational forces are opposed by infinitely
repulsive electrostatic forces. This calculation is of academic interest in that it allows

⊥ 0 0⁄= Φ 0 0⁄=
0 0⁄

0 0⁄
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physical calculations to proceed in the face of division by zero. We break off the analysis at
this point and remind the reader that transreal arithmetic gives school children the ability to
solve problems involving physical singularities – problems which currently strain or defeat
professional physicists who have not learned transreal arithmetic.

3.1 Transreal Arithmetic

Figure 1: Transreal number-line.

The line, drawn in the figure above, is the real number-line, which contains all of the finite
numbers. These are, firstly, zero; secondly, the counting numbers (positive integers); thirdly
the negative counting numbers (negative integers); and the measuring numbers. The
measuring numbers are, firstly, fractions, being rational numbers, excluding the integers and
specifically excluding zero; secondly, irrational numbers. Pedagogues will note that the
arithmetic of fractions taught in primary and secondary schools is a proper subset of rational
arithmetic. Most significantly, zero is not a school-fraction. For example, school students
write , where  is an integer. They are not taught to apply the rules of rational
arithmetic which give . The big dots, , show the
non-finite numbers. The extended-real number-line is the real number line with infinity, ,
and minus infinity, . Every number to the right of zero, on the extended-real number-line,
is positive; every number to the left of zero, on the extended-real number-line, is negative.
Zero is neither positive nor negative. The sign of zero is zero. This definition, which is
widely accepted in the world, contradicts the teaching of sign in French speaking primary
and secondary schools, where it is taught that zero is a positive number. The transreal
number-line is the extended-real number-line with nullity. Nullity, , lies off the extended-
real number-line and lies at the angle nullity to it. Nullity is neither positive nor negative.
The sign of nullity is nullity. Infinity, , is the most positive number and minus infinity, ,
is the most negative number. Infinity is bigger (further to the right on the extended-real
number-line) than any number, except itself and nullity. Minus infinity is smaller (further to
the left on the extended-real number-line) than any number except itself and nullity. Nullity
is equal to itself, but is not bigger than or smaller than any number – because it is not on the
number line. This paints a mental picture of how the transreal numbers relate to each other
and gives a vocabulary for talking about these relationships. Both aspects are extended in
more advanced study.

The canonical or standard or least terms form of certain numbers is as follows.
Transreal one, , is real one divided by (over) real one: . Transreal minus-one, ,
is real minus-one divided by (over) real one: . Transreal zero, , is real zero divided by
real one: . Transreal infinity, , is real one divided by (over) real zero: .

∞∞–
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Transreal minus-infinity, , is real minus-one divided by (over) real zero: .
Transreal nullity, , is real zero divided by (over) real zero: . Any irrational
number  is  divided by (over) real one: .

Transreal numbers can be expressed as transreal fractions, , of a real numerator, ,
and a non-negative, real denominator, . Transreal numbers with a non-finite numerator or
denominator simplify to this form. An improper fraction can be written with a negative
denominator, but it must be converted to a proper fraction, by carrying the sign up to the
numerator, , before applying any of the transreal arithmetical operations. This can be done
by multiplying both the numerator and denominator by minus one; it can be done by
negating both the numerator and the denominator, using subtraction; and it can be done,
instrumentally, by moving the minus sign from the denominator to the numerator.

(1)

Transreal infinity is equal to any positive number divided by zero. Transreal minus-
infinity is equal to any negative number divided by zero. Zero is equal to zero divided by
any positive or negative number. With  we have:

(2)

The ordinary rules for multiplication and division apply universally to the proper
transreal-fractions. That is, these rules apply without side conditions. In particular, division
by zero is allowed.

(3)

(4)

We can now calculate one of the formulas given in the introduction:

(5)

A different example illustrates the procedure for keeping the sign of a transreal fraction
in the numerator. Here . Without this procedure the result would be , which
would violate the usual rule that the product of a positive and a negative number is negative.

(6)

Addition is more difficult than multiplication and division because it breaks into two
cases: the addition of two signed infinities and the general case. Two infinities are added
using the ordinary rule for adding two fractions with a common denominator:
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(7)

Finite fractions may be added using this rule, if they happen to have a common denominator,
but infinities cannot be added using the following general rule of addition. If infinities were
added by the general rule we would have , but this is inconsistent with various
arithmetics of the infinite that have . See, for example: [26] [27] [28] [29].

The general case of addition is:

(8)

Subtraction is the addition of a negated number:

(9)

We can now calculate one of the formulas given in the introduction:

(10)

A different example illustrates general addition. If the rule for adding two infinities
were used here the result would be . This would lead to a more complicated arithmetic
that is a bigger departure from ordinary arithmetic and would make it more difficult to use
nullity to model an unknown value. As things stand in transreal arithmetic: finite numbers
can be used to model quantities whose magnitude and sign are know completely; infinities
can be used to model quantities whose sign is known completely, but whose magnitude is
known only to be big; and nullity can be used to model quantities where nothing is known
about their sign or magnitude. Ultimately, the transreal definition of arithmetic on nullity is
an aesthetic choice which might be overturned by experience.

(11)

Transreal arithmetic is totally associative, totally commutative, but is only partially
distributive at infinity. When we present proofs later in the paper we give some
computations explicitly and assume that the reader can supply all similar associative and
commutative cases. This is an ordinary assumption of proofs given in many parts of
mathematics; though some formal work, and all machine proofs, give all cases explicitly.

The axiom of transreal distributivity [1] can be broken down into a number of cases. As
usual, a number, , distributes over  when:

(12)

If  is a finite number or nullity then  distributes over any . If  is infinity or minus
infinity then  distributes if  or  or  and  have the same sign. Two
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numbers have the same sign if they are both positive, both negative, both zero, or both
nullity. For example,  is distributive because:

(13)

and

(14)

Conversely,  is non-distributive, because:

(15)

but

(16)

These examples are formal because they apply the formal definitions given above; but,
in practice, one soon comes to take effective shortcuts. For example:

 and (17)

These particular shortcuts are just applications of the axioms of transreal arithmetic [1].
In fact, the axiomatisation was obtained as an axiomatisation of shortcuts. This is both an
advantage, in that the axioms are concise, and a disadvantage, in that the axioms conceal
algorithmic structure. It should be remembered that the axioms were devised in order to
obtain a machine proof of the consistency of transreal arithmetic; but it would be possible to
develop a more leisurely axiomatisation of the algorithms, along the lines of the successive
axiomatisation of natural numbers, leading to integers, leading to rational numbers, leading
to real numbers, leading to complex numbers, as given, for example, in [30].

This is as much of the tutorial as has been presented to school children. We have found
that children in the age range from 12 to 16 years, inclusive, have no psychological barriers
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to learning transreal arithmetic, but that older school children, who have started the A-level
syllabus, do have such intellectual inhibitions. Adults are particularly resistant to the notion
of dividing by zero.

There is a great deal more to say about transreal arithmetic, which secondary-school
students could learn; but we already have enough to extend secondary-school physics
lessons to the calculation of Newtonian forces at, and near, a singularity.

3.2 Newtonian Singularity

Figure 2: Particles at, and near, a singularity.

Consider three particles, , at finite locations, as shown in the figure above.  and  lie

at a distance  from each other and, therefore, form a singularity.  lies at a

distance, , of one Planck length from the singularity. Suppose that the particles are
heavy electrons (tau electrons, obeying the Pauli exclusion principle at the singularity). Use

the following approximations:  metres; the mass of each tau electron is

 kilo grammes; each tau electron carries a negative charge of

 Coulombs; the gravitational attraction between two masses is

 Newtons; and the electrostatic force between two charges is

 Newtons.

Calculate the gravitational attraction between  and  at the singularity. Thus:

(18)

Calculate the gravitational attraction, in Newtons, between the singularity and .

(19)

Similarly, calculate the electrostatic repulsion of  Newtons between  and  at the

singularity, and of, approximately,  Newtons between the singularity and .
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Now calculate the resultant force of  Newtons at the singularity, and of

 Newtons at . Thus, the resultant force is large and

repulsive at ; but, in order to interpret the force at the singularity, we need to know how
the laws of motion operate in the presence of non-finite quantities.

We adopt the debating stance that the laws of motion, as stated by Sir Isaac Newton, can
be read so as to apply to non-finite quantities. The first law, stated in Latin, may be
translated as, “Every body perseveres in its state of being at rest or of moving uniformly
straight forward, except insofar as it is compelled to change its state by forces impressed.”
See [12] p. 416. Whereas nullity lies outside the extended-real universe, and lies at no real
orientation to it, as shown in Figure 1, we accept, as an axiom, that it cannot impress any
force on a body in the extended-real universe. In other words, a force of nullity has the same
influence, in the extended-real universe, as a force of zero. At the point at nullity itself, a
force of nullity operates according to transarithmetic. This differs from modern formalisms
of the first law, in that they allow an alteration of state only in response to a non-zero,
resultant force, where we allow an alteration of state only in response to a force which is
both non-zero and non-nullity. In other words, in response to an infinite or else non-zero,
finite force. We differ, too, in allowing infinite forces.

The difference between infinite and nullity forces may best be understood by
considering the following diagram and a modification of the argument given in [5].

Figure 3: Comparison of infinite and nullity forces.

Consider any point, , on the real number line. There is a point, , on the real number line,
that is intermediate between  and . There is also a point, , on the real number line,
that is intermediate between  and . A force of any non-zero, real magnitude can move a
body at  to , that is toward , or else to , that is toward , depending on the sign of
the force. Thus, a body may experience a continuous motion resulting from a Newtonian
force that moves it, without finite bound, toward a signed infinity. We suppose that this
Newtonian force can be extended to infinite magnitude so that it moves  exactly to a point
at infinity, marked  or  in the diagram. By contrast, there is no point intermediate
between  and  so no force whatever can move a body continuously from  in the
direction of . In particular, no Newtonian force can move a body in this way. We suppose
that there is no extension of this, non-existent, Newtonian force that operates on bodies in
the real-numbered universe. Similarly, there is no point intermediate between  and ,
nor between  and , so no force whatever can move a body continuously from  or 
in the direction of . In particular, no Newtonian force can move a body in this way. We
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suppose that there is no extension of this, non-existent, Newtonian force that operates on
bodies in the extended-real universe. So far as a body in the extended-real universe is
concerned, a force of nullity is indistinguishable from a force of zero so we shall say that
nullity forces project into the extended-real universe as zero forces. By what has just been
said about betweenness, a body at  cannot be moved continuously toward any point in the
extended-real universe, but as all transreal or transcomplex quantities combine
arithmetically with  to produce , we may say that a nullity force operates according to
the rules of transarithmetic and leaves a body at  unmoved.

Notice that the above argument is not a proof. It seeks only to make an axiom seem
plausible. The axiom that nullity forces project into the extended-real universe as zero
forces, along with the entire argument, would be thrown out if there were any good reason,
especially an empirical reason, to believe that some other state of affairs applies in the
universe we live in.

The second law, stated in Latin, may be translated as, “A change in motion is
proportional to the motive force impressed and takes place along the straight line in which
that force is impressed.” See [12] p. 416. Reading “a change in motion” as “a change in the
quantity of motion,” and reading this, as a change in momentum, makes force the subject of
the law, as stated in the form: . (It should be noted, however, that reading modern
physical concepts into Newton’s work can be problematical. A modern reading involving
differentials might be preferred. For our purposes, however, the form just given is adequate.)
But if all of the parameters of acceleration, , force, , and momentum, , are transreal
then there are some combinations of two parameters that prevent the third parameter from
being computed. For example, if an infinite force acts on a body with zero mass then we
cannot compute the acceleration in . This difficulty is overcome, here, by making
each parameter the subject of an equation. Thus, we also have  and .
Using the former, we have  so that an infinite force impresses an infinite
acceleration on a body with zero mass. In this case the momentum is  and, by
analogy with our rule for forces, we say that a nullity momentum operates as a zero
momentum on a body anywhere in the extended-real universe. More generally, we say that if
an equation deals with a body in the extended-real universe, and the equation involves any
force term, and the equation evaluates to nullity, then the result of nullity may be replaced by
zero. The rule for re-writing nullity as zero in the extended-real universe is a physical rule,
not a general, mathematical, one. With this understanding, it follows that all bodies with
zero Newtonian mass have zero Newtonian momentum. (Proof: with the usual notation,

, but  for all finite, , and  for all non-finite .)
We restate our second law as, “A motion obeys all satisfied equations of the form

, , or  where  is a transcomplex (vector) acceleration,  is a
transcomplex (vector) force,  is a transreal (scalar) mass, and the directions of  and 
are equal.” The terms acceleration, force, and mass have their usual, modern definitions; but
are permitted to take on transvalues.

The third law, stated in Latin, may be translated as, “To any action there is always an
opposite and equal reaction; in other words, the actions of two bodies upon each other are
always equal and always opposite in direction.” See [12] p. 417. We restate this law by
making the arithmetic of actions and reactions explicit as transcomplex (vector) operations
on forces. Thus, “To any action, , there is always an opposite and equal reaction, ; in
other words, the actions of two bodies upon each other are always equal and always opposite
in direction.”
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In our restatement of the laws of motion, all of , ,  are transcomplex values, but
can be read as transreal values, laid off in real directions as specified by Newton, or else laid
of in the direction nullity. Thus, both transcomplex arithmetic and transreal vector-
arithmetic, support a Newtonian transphysics which operates at singularities.

We tabulate the three equations, used to redefine the second law, for all of their transreal
parameters. The values  in the table are arbitrary, real, positive constants. Recall that any

value of  in the body of the table can be re-written as zero only if the physical body is in
the extended-real universe. Values of nullity in the heading row and column cannot be
rewritten. For example, a body that lies at nullity may have a mass of nullity.

Now it is clear that the tau electron , near the singularity, is repelled from the

singularity with considerable force, of magnitude, approximately,  Newtons; but
 and , at the singularity, have a force of nullity acting on them, which is equivalent to a

force of zero, so they remain at the singularity, being neither mutually repelled nor attracted.
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3.3 Discussion
The reader is warned that there is a great deal more to know about transreal arithmetic and
its applications than is presented in this brief tutorial. In particular, we have yet to describe
the proper treatment of distance and orientation, which we do in the development of
transcomplex arithmetic. Nonetheless, the reader may now compute the resultant of any
forces operating on particles at a singularity, or at any fixed, positive, distance from the
singularity, providing all of the locations are finite. Later on, when non-finite distance and
orientation are understood, it will be possible to compute these properties at any location.

A simpler exercise, which builds confidence, is to confirm the results in the left hand
part of Table 2 and all of the results in Tables 3-5. The reader is reminded that all of the
numerical examples in this paper are computed by software in the on-line appendix. The
software follows a transcomplex computational path, wherever possible, and agrees with all
of the examples in this paper, which the author prepared by hand, and which the reader can
check by hand. In particular, this demonstrates that all of the examples of transreal
arithmetic are obtained by a corresponding transcomplex computation. Checking all of the
transcomplex computations by hand is laborious, but the reader might care to try a few
examples once transcomplex arithmetic has been presented.

4. Floating-Point Arithmetic

In this section we show that floating-point arithmetic is more efficient and safer when it is
based on transreal arithmetic, rather than when it uses the IEEE specification [3] [4] which
employs objects that are not a number, NaN, and minus zero, . This is offered both as an
improvement to computer arithmetic and as a demonstration that transreal arithmetic is
useful. It also places floating-point implementations of both complex and transcomplex
arithmetic on a firmer footing. We note that there is, as yet, no international standard for the
execution of complex arithmetic on a digital computer.

4.1 IEEE Floating-Point Format
A binary, IEEE floating-point number is represented as follows. See [3], especially p. 7-9. A
floating-point number is represented by three bit-strings  being: a 1-bit sign, ; a
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biased exponent, , where  is the unbiased (signed) exponent and  is the
bias; and a fraction, , where the  are bits and  is the number of

significand bits (vernier precision). The range of the unbiased exponent, , includes every
integer between  and , inclusive, and also has two other reserved values: 

is used to encode  and the Not a Number, , objects; and  may be used to

encode  and the denormalised numbers (explained next), though it may remain an option
to use some other exponent to encode these zeros and denormal numbers. For example,

 may be so used. (The standard [3] is ambiguous on this point: p. 8 allows the

option, p. 9 disallows it. The computing industry has adopted .) But, whatever
exponent is reserved, all of the representable real numbers are of the form

 which is redundant as 
However, the standard specifies that non-extended precisions use non-overlapping
normalised and denormalised numbers. Normalised numbers have  with the

exponent variable. Denormalised numbers have  with the exponent a reserved value.
This scheme of normal and denormal numbers has no redundancy. However, the extended
precision formats are allowed to take  and the exponent arbitrarily, within the scheme, so
they may contain the redundancy. There are three objects which are not real numbers and
not NaNs encoded by the bit strings. These are: , , . In addition, there are at least

two NaNs, a quiet NaN and a signalling NaN, and at most  NaNs. Note that the sign
bit, , is not defined to carry any information when the bit strings  and  together encode a
NaN object. In this case we say that the NaNs are unsigned. When we pay attention to the
sign bit, in order to count the number of wasted states, we say that the NaNs are signed.

There are  signed NaN states, only half of which are distinguished by
the standard, and only two of which must be implemented. The number of wasted states is
tabulated below, using the nomenclature of the 2008 version of the standard [4].

The wasted NaN states are free to be re-assigned when the floating-point format models
transreal arithmetic – rather than modelling real arithmetic, as extended by the IEEE
standards. And, as transreal arithmetic has , the floating-point state for IEEE  can
also be reassigned in transfloating-point arithmetic. In summary, the IEEE floating-point
format has a great many redundant states which can be re-assigned to unique real numbers in
transfloating-point arithmetic to produce an irredundant representation.

Table 6: Wasted NaN states in IEEE floating-point arithmetic

Name Common Name p Wasted NaN States

binary16 half precision 10 2 046

binary32 single precision 23 16 777 214

binary64 double precision 52 9 007 199 254 740 990

binary128 quadruple precision 112 10 384 593 717 069 655 257 060 992 658 440 190
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4.2 Transfloating-point Format

Transreal numbers [1] are the real numbers augmented with three non-finite numbers: ,
, . Transreal arithmetic has no object , that is distinct from zero, so we re-assign the

IEEE bit-pattern for  to . Henceforth, nullity, zero, and the denormal numbers are all
represented by one of the two reserved exponents, usually . We do not reserve the

exponent . Instead, we re-assign it to the ordinary exponent bits, thereby exactly
doubling the range of real numbers encoded by the scheme. However, we do reserve the

most positive bit pattern, of the form , to represent . Similarly

we reserve the most negative bit pattern, of the form , to

represent . Thus, we reserve two bit patterns with exponent  and say that we
have nearly doubled the numerical range of the real numbers represented by the scheme.
Alternatively, if we increment the bias, , by one, then we retain the same range of real
numbers, less one signed number, differing from the most extreme, real, IEEE floating-point
number in only its least significant bit, but we thereby extend the scale precision by exactly
one binade.

In summary, we keep the IEEE encodings of  and of the denormalised numbers and of
the normalised numbers, but we re-map the code for IEEE  to , and we re-position 
so that the significand, with maximal exponent, has all bits set rather than clear. We then re-
allocate all of the remaining bit patterns in this significand to normalised, and therefore
unique, real numbers. Thus all of the NaNs are replaced by unique numbers. This removes
all redundancy from the IEEE non-extended formats. Therefore, the transfloating-point
format is more efficient than the IEEE format. We leave the reader to decide whether it is
better to keep the IEEE bias, which almost doubles the arithmetical range of real numbers, or
else to increment the IEEE bias by one, which leaves the range almost the same, but extends
the scale precision by exactly one binade.

4.3 Relational Operators
The IEEE standard ([3] pp. 12-13) provides four, mutually exclusive, Boolean, ordering
relations: less than (<), equal (=), greater than (>), and unordered (?). As special cases,
minus zero and zero compare equal ( ), even though these two objects are different,
and NaN objects compare unequal, even if they are identical . Apart from these
special cases, the relations less than, equal, and greater than all have their usual
mathematical meanings. The unordered relation is true (T) if any of its arguments is NaN,
and is false (F) otherwise. This gives the only standard way of determining if an object, , is
NaN: by testing the truth of . The forms isnan(x) and  are specifically excluded
from the standard ([3] p 17). While the four ordering relations are mutually exclusive, they
are not orthogonal: there are 14 positive relations that have no NOT predicate, and 12
negations, which do contain a NOT predicate. The non-negated pair of relations is equal (=)
and not equal (?<>). Consequently, the missing negations are NOT(=) and NOT(?<>).
Precisely 12 of the Boolean relations generate exceptions (error conditions) if any of their
arguments is NaN. But the implementor of the standard is free to choose whether to supply
Boolean operations, with exceptions, or else flags – greater, less, equal, unordered – without
exceptions. If Boolean relations are implemented then only the first 6 are mandatory
(=, ?<>, >, >=, <, <=). If exceptions are generated, the programmer can choose whether to
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handle the exceptions in a trap, or else to let the standard complying system follow its
default behaviour. Thus, the IEEE standard specifies a complicated ordering of floating-
point numbers and allows considerable variation in how exceptions are implemented.

Transreal arithmetic [1] provides three, mutually exclusive, Boolean, ordering relations: less
than (<), equal (=), and greater than (>). These relations have their usual mathematical
meaning. There are no special cases and no exceptions. The operations are orthogonal, with

Table 7: IEEE ordering relations: 14 positive, 12 negations, 12 exceptions

Predicate Greater Less Equal Unordered Exception

= F F T F No

?<> T T F T No

> T F F F Yes

>= T F T F Yes

< F T F F Yes

<= F T T F Yes

? F F F T No

<> T T F F Yes

<=> T T T F Yes

?> T F F T No

?>= T F T T No

?< F T F T No

?<= F T T T No

?= F F T T No

NOT(>) F T T T Yes

NOT(>=) F T F T Yes

NOT(<) T F T T Yes

NOT(<=) T F F T Yes

NOT(?) T T T F No

NOT(<>) F F T T Yes

NOT(<=>) F F F T Yes

NOT(?>) F T T F No

NOT(?>=) F T F F No

NOT(?<) T F T F No

NOT(?<=) T F F F No

NOT(?=) T T F F No
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no missing predicates and no missing negations. The empty symbol, with no occurrences of
<, =, > is not listed because it is empty. Nonetheless, this symbol could be supported by a
computer language, if desired. The implementor is free to implement transreal ordering
relations with Boolean predicates, flags, or any sufficient method. No exception handling is
needed. Our preference is to indicate negations by a character, such as (!), rather than writing
out NOT as a predicate. Thus, we prefer to use, respectively, !=, !>, !>=, !<, !<=, !<>, !<=>
in preference to NOT(=), NOT(>), NOT(>=), NOT(<), NOT(<=), NOT(<>), NOT(<=>). All
of the relational operators are distinct, as can be seen from the fact that no two rows, in the
body of the table, are equal. Every operator can return either true or else false, depending on
its arguments. For example  and . This relation may be used
to determine if exactly one of its arguments is nullity.

In summary, transreal arithmetic provides the usual mathematical ordering relations, with
their ordinary mathematical meanings. But IEEE floating-point arithmetic provides an
additional (and entirely redundant) mathematical ordering relation (unordered), changes the
meaning of the ordinary mathematical relation of equality, changes the other relational
operations so that some of them generate exceptions, omits two negations, forbids the
implementor from using both flags and Boolean relations, and, perversely, recommends that
NaNs are identified by non-standard methods. All of these departures from the ordinary
mathematical ordering relations are redundant, as the counter example of transreal
arithmetic demonstrates.

We suggest that there are very few programmers who know all of the IEEE ordering
relations and can apply them correctly in their various implementations. Even where such
programmers are employed, say on the implementation and testing of safety critical systems,

Table 8: Transreal ordering relations: 6 positive, 6 negations, 0 exceptions

Predicate Greater Less Equal

= F F T

> T F F

>= T F T

< F T F

<= F T T

<> T T F

<=> T T T

!= T T F

!> F T T

!>= F T F

!< T F T

!<= T F F

!<> F F T

!<=> F F F

Φ <=> 0 false→ Φ !<=> 0 true→
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the IEEE standard [3] gives little guidance on how NaNs arise in mathematical functions. By
contrast, nullity is a number so its occurrence in mathematical functions can be deduced or
else defined. In conclusion, we suggest that the IEEE standard is so complicated, and is so
mathematically perverse, that it encourages programmer error, making the standard
dangerous.

4.4 Discussion
IEEE floating-point arithmetic uses a total system of bits to represent real numbers. The
system is total in that every bit can be set, independently, to every possible value: zero or
else one. In theory, it is possible to construct a bijection between any two sets of equal
cardinality but, in practice, it seems to be difficult to map a partial system onto a total one
without wasting states or creating error states. This is certainly the case when a finite subset
of real numbers, a partial system, is mapped onto a total floating-point format. For example,
a sign bit has two states, but real numbers have three signs: negative, zero, and positive. If
we are to encode all three signs in two bits then there is one wasted state. IEEE floating-
point arithmetic avoids this waste by introducing two classes of numbers: normal and
denormal. The sign bit of a normal number indicates whether it is strictly positive or else
strictly negative. The sign bit of a denormal number denotes wether it is positive, including
zero, or else negative, including negative zero – with negative zero being specially defined
in IEEE floating-point arithmetic. By contrast, there are four signs in transreal arithmetic:
negative, zero, positive, and nullity. Transfloating-point arithmetic takes normal and
denormal numbers strictly positive or else strictly negative, and takes the zero significand as
real zero or else transreal nullity. No new class of object need be invented in order to use all
of the available sign states. The position is even more stark on division by zero. Real
arithmetic cannot divide by zero so states must be used somewhere in a floating-point unit to
describe the errors that arise when the programmer instructs a division by zero. IEEE
floating-point arithmetic uses at least four states to handle these errors: negative infinity,
positive infinity, quiet NaN, and signalling NaN. None of these are numbers. The NaNs are
explicitly NOT A NUMBER ([24], page 8) and the infinities are defined to be limits, where
these limits exist ([24], page 13). This definition is not Turing computable so we must read it
as an analogy that is supposed to justify the non-finite arithmetic defined in the rest of the
standard. By contrast, positive infinity, negative infinity, and nullity are identified as
particular ratios of integers in transreal arithmetic, such ratios obeying ordinary algorithms
of rational arithmetic. (Specifically, ; ; .) Thus, transreal
arithmetic adds three non-finite numbers to the real numbers modelled by the floating-point
format, whereas IEEE arithmetic adds a very large number of NaN states – half of the signed
NaN states being explicitly wasted. As we said, it is not logically necessary that representing
a partial system in a total one wastes states or creates error states but, in practice, this does
seem to be a common outcome in practical computer systems. This observation justifies the
study of total systems of computation.

The totality of transfloating-point arithmetic brings further advantages. IEEE floating-
point arithmetic defines five classes of exception (error). See [24], pp. 8, 14-15. These are:
inexact, underflow, overflow, divide by zero, and invalid operation. In transreal arithmetic
division by zero is not an exception so the only value in signalling it would be for backward
compatibility. Similarly, a total arithmetic can support total functions so one can design
computer systems with no invalid operations (and we have done this [5]). This leaves just
the exceptions: inexact, underflow, and overflow. These three exceptions arise only from
numerical round-off. But in IEEE’s default rounding mode, round to nearest, ties to even
([24], page 10), the position is simpler than this. Underflow occurs if and only if an inexact

∞ 1 0⁄= ∞– 1 0⁄–= Φ 0 0⁄=
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operation produces the result zero, and overflow occurs if and only if an inexact operation
produces a signed infinity as result. Therefore, in this rounding mode, only one exception is
needed: inexact. One can then test the result to see if it is zero (underflow), a non-zero-real
number (inexact), or an infinity (overflow). Conversely, if there is no inexact exception then
the result is exactly: zero, non-zero-real, an infinity, or nullity. Thus, transfloating-point
arithmetic removes two of the five exceptions in all rounding modes and removes four of the
five exceptions in the default rounding mode. This reduction in complexity makes it simpler
to implement correct programs, which is to say that transfloating-point arithmetic is, again,
safer than IEEE floating-point arithmetic.

We leave the reader to decide whether it would be useful to reserve one bit of a
transfloating-point format to be an inexact flag.

In conclusion, we have proved that transfloating-point arithmetic is more efficient than
IEEE floating-point arithmetic because it has no redundant states. We suggest, further, that
the IEEE standard is dangerous for both a psychological and a technical reason. Firstly, it is
so complicated that it encourages programmer error. Secondly, it has exceptional, that is,
error, states which can terminate execution abnormally. By contrast, transreal arithmetic is
simple and has no exceptional states so it can never terminate abnormally. Therefore,
transfloating-point arithmetic is both more efficient and safer than IEEE floating-point
arithmetic. However, transreal arithmetic is new. Very few people know it so the logistics of
moving to safer coding practices and safer hardware are difficult. If transreal arithmetic is
adopted by the computing community, things will probably get worse before they get better.
It is, therefore, very important that the transition to transreal arithmetic is handled, carefully,
by knowledgeable people.

The benefits of improved efficiency and safety highlight the costs of failing to examine
and adopt transreal arithmetic.

5. Newton, Euclid and Pythagoras

The present paper is one of a sequence of papers which seeks to develop mathematics so that
it allows division by zero in a natural and useful way. One goal of this research is to develop
the methods of mathematical physics so that they enable the calculation of physical
properties at singularities, as demonstrated in the Tutorial. Much of Newton’s work [12] [15]
uses methods of real arithmetic, which we have already developed into transreal form, and
of calculus, which we have begun to develop [5] [6]. In particular, [5] provides a framework
for extending Newton’s use of first and ultimate ratios, which are the only explicit
appearance of calculus in his Philosophiae Naturalis Principia Mathematica. When we
examine physical questions using our new mathematical tools, we sometimes accommodate
non-finite quantities by explicitly making each parameter of Newton’s equations the subject
of a defining equation, to which we may add boundary conditions. But we may also look at
historical texts to see if there are formulae or methods that apply, without any change, when
transnumbers are substituted for whatever other kind of number the historical text assumed.
That is, are there any historical formulae or methods that apply lexically to transnumbers?

On examining the Principia, in translation [12] [13], we find that Newton makes use of
six classical operations on Euclidean proportions, as set out in the Book 5 of Euclid’s
Elements ([31] vol. 2, especially pp. 114-115). Following the practice in Newton’s time,
these are given Latin names in [12] p. 313-314, where references are given to some, but not
necessarily all, of their occurrences in Newton’s Principia. We repeat these references here:
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alternando (book 1, prop. 45, ex. 2); convertendo (book 1, prop 94, case 1; book 2, lem. 1);
componendo (book 1, prop. 1; prop. 20, case 2); dividendo (book 1, prop. 20, case 1; book 2,
prop. 6); ex aequo (book 1, prop. 39, corol. 3; prop 71); ex aequo perturbate (book 1, lem.
24; book 2, prop. 30). We show that four of these – componendo, dividendo, convertendo, ex
aequo – apply to any transreal numbers when the Euclidean proportions, written in the
modern form, , are re-written as proper transreal-fractions, , of any transreal 
and . Here the diacritical prime marks the fact that the numerator, , and denominator,

, are in least terms. For every Euclidean length,  and , with , there is some
proper transreal-fraction  but, in general,  and  because the , 
are in least terms while the ,  are general. In particular, these classical operations apply
to negative, zero, and non-finite lengths that Euclid did not consider.

During the proofs we sometimes form a reciprocal, so that in passing from  to
 we use a second diacritical mark to denote a second reduction to least terms which

may, here, carry the sign of a transreal number from the numerator, , to the numerator, .
The concatenation of primes is carried out as many times as needed. We find that one
operation, ex aequo perturbate, branches into two forms, depending on whether the lengths
are all finite and non-zero or else some of them are zero or non-finite. If Newton had used
these transreal forms of ex aequo perturbate, he would have been obliged to break his
argument into the two cases of a non-zero, finite solution and a zero or non-finite solution. It
seems that Newton uses the Euclidean ex aequo perturbate in just one place in his Principia:
book 2, prop. 30; page 710 in [12]. This proposition deals with the motion of a pendulum
acting against a resisting force and has no influence on Newton’s Book 1: The Motion of
Bodies or Book 3: The System of the World that develop, respectively, Newton’s dynamical
and gravitational theories. We find that the last operation, alternando, applies to any
transreal numbers when a canonical form of proportions is used prior to casting the
proportions into proper transreal-fractions. This operation can be carried out without
branching so Newton could have used the transreal form of alternando without modifying
his argument. It seems that Newton uses the Euclidean alternando in just one place in his
Principia: book 1, lemma 20, case 1; pp. 485-486 in [12]. But the influence of lemma 20
spreads out from there.

In Euclid’s time, neither negative numbers nor zero were known so in Euclidean
proportions, written in the modern form, , the lengths  and  are positive and finite.
That is, . This is so even where a subtraction is involved, as in the length

. The length  is always positive. If  then  is marked off in the direction
of ; if  then  is marked off in the direction of , which is opposite to the direction
of ; but if  then  does not exist. There is no zero length in Euclid’s proportions. It
is as surprising that componendo, dividendo, convertendo, and ex aequo, as given by Euclid,
apply to zero as it is surprising that they apply to infinity. We might ask why these operators
were not extended by Newton? Newton recommended the use of negative numbers and zero
when working algebraically with geometrical lengths ([15] vol. 5, p. 59). He set out division
as multiplication by a reciprocal ([15] vol. 5, p. 81), as both we and Carlström [25] do, but
Newton gave no indication, in the Principia, of how the reciprocal of zero should be
handled. This prevents the extension of the Euclidean operations on proportions, because
both zero and its reciprocal, infinity, are needed to preserve symmetry within the
proportions. While Newton understood zero, and all of rational arithmetic, as evidenced by
his Arithmetica Universalis ([15] vol. 5, especially pp. 52-109), which rational arithmetic is
the basis of transreal arithmetic, and understood his own, and Leibniz's, calculus of limits,
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and understood infinity as an unbounded number, yet he considered an exact infinity to be
paradoxical ([15] vol. 1, pp. 89-90). Still less, did Newton understand nullity, which is
needed to make arithmetical operations total. Newton was also blocked by his understanding
of equality. In modern notation, Newton held that . (See [15] vol. 5,
especially pp. 110-113.) This prevented Newton from recognising that non-finite  can be
equal, because, in this circumstance, . Quite simply, Newton had no access to
transreal arithmetic which would have allowed him to generalise Euclid’s operations on
proportions to non-finite numbers, and which would have allowed him to generalise both his
arithmetic and calculus. It is not until a set theoretical notion of equality is available, that it
is possible to do these things.

Euclid’s writings date to the 3rd Century B.C., but they are, in large part, a compendium
of earlier knowledge. Operations on proportions of numbers, treated in book 7 of the
Elements ([31] vol 2), are said, ([31] pp 112-113), to date to Pythagoras [6th Century B.C.]
who introduced the harmonic mean from the Babylonians. The Babylonians must, therefore,
have known this proportion at an earlier date. Thus, some of the mathematical methods in
use in the 6th Century B.C., and earlier, could be extended, by the modern mathematician, to
allow division by zero.

Our intention is not to examine Newton’s work in its historical context [32], nor to
interpret it in modern form [33], but to show that the Euclidean and Pythagorean
mathematics used by Newton can be extended to deal with transreal numbers. We invite the
reader to consider how naturally transreal arithmetic extends these early notions of
proportions? The first four operations on proportions are extended lexically, the latter two
involve the introduction of a computational path that would have been alien to historical
writers.

Note, very carefully, that the following proofs are carried out in transreal arithmetic, not
in real arithmetic. However, a reader who has not learned transreal arithmetic may read the
first four proofs, lexically, as real proofs. That is, these four transreal proofs apply, without
change, to real numbers. The remaining two proofs cannot be read as real proofs. The reader,
who wishes to follow them, has no option but to learn transreal arithmetic.

5.1 Componendo

It is to be proved that if  then  where , , , 
are arbitrary transreal numbers.

Let  then (20)

(21)

(22)

 Q.E.D. (23)

a b a b–⇔ 0= =

a b,

a b– Φ 0≠=
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5.2 Dividendo

It is to be proved that if  then  where , , , 
are arbitrary transreal numbers. The proof is similar to the above, but we give it explicitly.

Let  then (24)

(25)

(26)

 Q.E.D. (27)

5.3 Convertendo

It is to be proved that if  then  where , , , 
are arbitrary transreal numbers.

Let  then (28)

(29)

(30)

(31)

(32)

(33)

 Q.E.D. (34)

5.4 Ex aequo

It is to be proved that if  and  then 
 where , , , , , , ,  are arbitrary transreal numbers.
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Let  and  then (35)

(36)

 Q.E.D. (37)

5.5 Ex aequo perturbate

It is to be proved, equation (41), that if  and  then
 where , , , , ,  are non-zero, real numbers. In a departure from

Euclid, it is also to be shown, equation (40), that  for all
transreal numbers.

Let  and  then (38)

(39)

 Q.E.F. (40)

 by cancellation of real, non-zero , . Q.E.F. (41)

5.6 Alternando

It is to be proved that if , in a particular canonical form, then
 where , , ,  are arbitrary, transreal numbers.

We begin by re-writing zero and infinite proportions in a canonical form. Other
proportions need not be re-written. This manoeuvre preserves sign information in the
product of fractions.

(42)

Let  then  and  Q.E.F. (43)
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Let  then  and  Q.E.F. (44)

Let  then  and 

 Q.E.F. (45)

Let  then  and , whence

 by cancellation of real, non-zero . Q.E.D. (46)

5.7 Discussion
Let us be clear what the above argument shows. We maintain that Newton’s arithmetic is
extended by transreal arithmetic [1], that the minimal use he makes of explicit appeals to
calculus is extended by transreal topology [5], and that the methods of proportions he uses
are extended to transreal ratios, as just proved. Thus, all of the mathematics in Newton’s
Principia is extended to transreal numbers. It would be possible, therefore, to re-write the
Principia so that all of the physics in it applies at singularities. While this might be of
historical interest, there are more pressing matters at hand, amongst them how to apply
transnumbers to modern physics, which is largely stated in complex numbers.

6. Transcomplex Numbers

It is possible to design mathematical structures and operations on them in exactly the same
way as data structures and programs are designed. This has the practical effect that a very
large number of programmers might become creative mathematicians. Let us see how a
programmer might partially extend complex numbers to transcomplex numbers. We then
show that all algebraic approaches, based on generalising Cartesian-complex arithmetic,
fail; but that a geometrical approach to constructing transcomplex numbers succeeds.

The programmer encodes complex numbers as a tuple, , of a radius, , and an
angle, , and implements the operations of complex multiplication, division, addition, and
subtraction. The programmer then loads subroutines that implement transreal arithmetic and
finds that the complex multiplication and division subroutines now work on any transreal 
and , including zero and non-finite numbers. In particular, the programmer can compute

, thereby computing any particular point at infinite radius and finite,
that is real, angle. Such points are not distinguished in complex analysis, where all points at
infinite distance are taken to be equivalent, regardless of angle. Thus, the programmer has
created a new mathematics. The programmer also finds that addition and subtraction now
work for any transreal arguments. But there are degenerate cases, such as

, where the programmer might reasonably have expected the
parallelogram rule, implemented in the addition subroutine, to compute a point at infinite
radius and intermediate angle: . On tracing the code, the
programmer finds that the -component of the parallelogram sum is computed as
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, and, similarly, for the -
component. The programmer has discovered, empirically, that in polar-complex form,
multiplication and division generalise well, but addition and subtraction, defined via
trigonometrical power series, do not.

Complex numbers are ordinarily defined in terms of Cartesian components and formal
operations on them; but replacing the real-numbered components with transreal components
fails for multiplication and division. For example, on writing 

, we note that transreal arithmetic is only partially distributive [1] so we
cannot multiply out the factors to obtain a formal definition of multiplication. Similarly,
division fails. Addition and subtraction can be defined formally, but they are degenerate. For
example, in polar form we expect , but on writing this in
Cartesian form we obtain , which holds for any polar 
with . In other words, the angle is indeterminate within a quarter rotation. For
these reasons, there is no algebraic extension of Cartesian-complex numbers to
transcomplex numbers. If we are to succeed, we must find another method for extending real
numbers to complex numbers, and this new method must also carry transreal numbers into
transcomplex ones.

We lay out the non-negative part of the real number line and sweep it through a full
rotation about zero. The swept surface is the complex plane. We define multiplication as the
usual composition of a dilatation and a clockwise rotation about zero. Similarly, we define
division as the usual dilation and an anti-clockwise rotation about zero. Finally, we define
addition and subtraction by the parallelogram rule, where the parallelogram is constructed
by producing lines geometrically. In other words, we do not specify a computation of the
parallelogram in terms of sine and cosine power series. Thus, we give a geometrical
construction of the complex numbers and their elementary arithmetical operations. This
construction immediately generalises so that the extended-real numbers generate the
complex numbers, extended by a circle at infinity, but we have a choice about how to sweep
transreal nullity. We must place nullity off our extended-complex plane so that its position is
consistent with transreal topology [5]. If we place nullity on an axle, orthogonal to the
complex plane and passing through zero, then the rotation which generates the extended-
complex plane carries the single point  onto itself; but if we place nullity anywhere else
then the rotation sweeps out a circle of points . In our exploration of transcomplex
mathematics we have found no convincing use for a circle at nullity so we adopt the former
choice of setting transreal nullity above zero. We will revise this decision if any convincing
use for a circle at nullity is found. In the mean time, we accept that the lexical circle at
nullity, , is equivalent to the single swept nullity. We must now choose whether to
label the single swept nullity as  or . On examining the Riemann sphere, which
we do later, we find that it is convenient to project the north pole of the sphere onto the point

 so, for completeness, we add the transreal axle, , orthogonal to the complex
plane and passing through zero. This axle gives rise to a double cover  and  at
the origin of the complex plane – which covers we agree to hold topologically distinct. This
axle also passes through  so we choose this as the label for the swept nullity, recalling
that we have already accepted the equivalence  for all transreal . Similarly,
we adopt the equivalence  for all real . Thus, we have set out a geometrical
construction of elementary arithmetic on our extended-complex plane, and the axle at angle
nullity; and we have given every point in the construction a unique label, when we respect
the double cover at zero and the equivalence classes on zero and nullity. This configuration
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is shown below. The axle at angle nullity is shown on the -axis. Our extended-complex
plane, , with a circle at infinity, is swept out by an extended-real radius rotated by a
real angle . (We note, in passing, that defining transcomplex arithmetic in terms of
geometry, reprises the role of Euclidean proportions in the development of real arithmetic.)

Figure 4: The axle, (z), at angle nullity; and our extended-complex plane, (x, y), swept out by an 
extended-real radius, rotated by a real angle, theta.

Notice that the decision to sweep the transreal number-line, through a single rotation,
restricts multiplication and division to operating on the argument of the angles involved.
This is the usual constraint and is consistent with addition and subtraction, because
parallelogram rules also operates on the argument of angles. Thus, none of our arithmetical
operations respect a Riemann surface that is taken through many rotations. Consequently,
we are obliged to accept a cut somewhere in the complex plane where large angles meet
small ones, say at  and . We loose continuity at this cut. However, if we

define transcomplex numbers as a three-tuple, , with  and  then,
when , ,  are all real, the tuple is a concatenation of three continuous parameters and is,
itself, continuous. Hence, we have no use for Riemann surfaces, nor does the complex plane,
being the finite part of both our and the ordinary extended-complex plane, contain any cuts.
However, depending upon the particular transcomplex function in hand, we may wish to
introduce cuts in the ordinary complex domain, that is in the finite part of the transcomplex
domain, of the function and, in the transcomplex case, we might wish to introduce non-finite
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cuts to separate the infinite or nullity parts from the finite part. Thus the use of three-tuples
improves the continuity of both ordinary complex and transcomplex functions.

The use of a three-tuple brings an immediate practical advantage to computation and
might bring a theoretical advantage to mathematical physics. Firstly, digital computation on

,  is much faster than evaluation of the sine, cosine, and arctangent power series. We
develop this efficient three-tuple scheme after examining the Riemann sphere, and give an
implementation of it as an on-line appendix. Secondly, the tuples  have a minimum
modulus of unity, because the minimum modulus of  is zero and  has a constant,
minimum modulus of unity. In both cases the moduli may be nullity, but nullity is neither a
minimum nor a maximum. Consequently, physical functions that are currently thought to
operate as , where  is the modulus of a complex number, might, instead, operate as

, in some units, where the term  is the modulus of a three-tuple. In other
words, the physical universe might be better described in three-tuple space than in complex
space. If so, the three-tuple ensures, by hypothesis, that physical functions are defined
everywhere in a finite domain, without cuts and, as a consequence of the modulus ,
have no infinities or nullities arising from a zero radius. Such functions would flatten out as

 becomes small. It is extremely unlikely that empirical physicists have missed such an
effect; but it is an empirically testable prediction which, if confirmed, would provide a very
powerful argument for adopting three-tuple arithmetic. In this paper, however, we develop a
mathematics which does allow finite, infinite and nullity behaviour at singularities so that
theoretical physicists, and others, have the opportunity to use a total mathematics that can be
computed efficiently, without resorting to special mathematical functions at singularities.

7. Riemann Sphere

The Riemann sphere is widely used in complex analysis and mathematical physics. Its
properties are, therefore, of both theoretical and practical interest. We find that transreal
arithmetic preserves all of the properties of the ordinary Riemann sphere and provides some
new properties at infinity and nullity, potentially opening up new opportunities for research
in mathematics and physics.

The Riemann sphere takes part in the stereographic projection of the complex plane.
This projection bijectively maps each point on the plane to each point on the Riemann
sphere, except for the point at the ‘north’ pole which is mapped to a non-complex point
called complex infinity. Traditionally, the sphere lies on the plane with its ‘south’ pole in
contact with the plane ([10], fourth lecture, pp 131-161), but the complex plane can be taken
anywhere parallel to this plane and is sometimes taken in the equator ([9] p. 45). We now
give a longish quotation from a text written in 1972 ([8] pp. 204-206). This explains the
Riemann sphere and is unusually frank in discussing the inability of contemporary
mathematics to divide by zero. This places our development of the Riemann sphere into its
proper mathematical setting and serves as an illustration of the mathematical importance of
transreal and transcomplex arithmetic. In the quotation, we have added equation numbers so
that we can conveniently refer to equations. We have mapped the existing equation numbers
and figure number so that they fit in with the numbering in this paper. We have re-drawn the
figure and have replaced the symbol  by  to denote a projection. We have given a
footnote in line, without indicating the footnote. We have slightly modified the layout. We
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have corrected an italicised  to an emboldened . We have set italic emphasis as
emboldened emphasis and have set the whole of the quotation in italic.

We will examine other special functions as we proceed, but first we
want to discuss the behaviour of a function “at infinity.” There is no
complex number that plays the role of this hypothetical point
“infinity;” nevertheless, in various situations it can be very helpful,
and enlightening, to think of this number as if it really existed. We
shall do this by taking the complex plane  and adjoining to it a new
point, labelled , to form the extended complex plane

. The new point  will be referred to as the point at
infinity.

We might entertain the idea of defining the usual algebraic
operations, sum, product, and quotient, in this enlarged system ,
and this can be done to a certain extent. Naturally, we take the usual
operations for pairs of numbers in the subset , the ordinary
complex numbers in . Our intuition also tells us how we should
define some of the operations between ordinary complex numbers
and the exceptional point ; the following rules are almost self-
evident:

(47)

Unfortunately, there is no reasonable way to define all of the familiar
operations in the extended number system , due to the fact that 
does not really behave like an ordinary complex number. In
particular, there is no reasonable value we can assign to the
combinations

(48)

Even in Calculus these are indeterminate forms, and must be left
undefined. Notice that  and  are not indeterminate
forms according to the rules we have set up. The combination 
is indeterminate (and not ) since our notion of infinity cannot
distinguish between  and ; thus  is no better than the
obviously indeterminate expression .

In this book our real desire is to use the extended number system to
understand geometric problems. For this purpose we will now set up
a simple geometric model of the extended complex number system 
in which the exceptional point  appears as an actual point. A
natural model is provided by the stereographic projection of the
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complex plane onto a sphere. Let us start with three dimensional
Euclidean space  with coordinates . The plane determined
by setting  is identified with the complex plane by letting

 correspond to the point  so that , ,
. Let  stand for the point , which can be regarded as

the north pole of the sphere  given by the equation

This sphere  has radius , and its south pole 
rests on the origin of the complex plane. The stereographic projection
maps a point  in the complex plane to a point on  along
the straight line segment that connects  to the polar point , as
shown in Figure 5. We write  for the projected point, and when
we identify the point  with the corresponding complex
number  in , we may regard  as a mapping from  into
the sphere .

Figure 5: Stereographic projection of the plane  onto the sphere S.

Each point  in the complex plane maps to a unique point on
S, and by direct calculations with similar triangles (which we leave to
the reader) we see that the projected point has coordinates

 given by
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(49)

where . Conversely, a point  on the sphere, other
than the exceptional point , corresponds to the point

 in the complex plane such that

(50)

It is important to notice that no point in the complex plane projects to
the polar point , while every point in the “punctured sphere”

 corresponds to a unique complex number. The exceptional
role of the polar point  allows us to use the sphere  as a model for
the extended complex plane , in which the exceptional
point  in  is identified with  and an ordinary complex number

 with its projection . Because we have chosen to represent 
as a sphere, the extended complex number system  is often referred
to as the complex sphere (or Riemann sphere).

Frederick Greenleaf ([8] pp. 204-206)

In the second paragraph, Greenleaf expresses the desire to enlarge complex arithmetic
so that it contains ordinary complex arithmetic and applies to infinity. He states that the
equations (47) are intuitive. These are equations of both transreal [1] and transcomplex
arithmetic so Greenleaf provides literal proof that these parts of transarithmetic are intuitive,
as is the idea of providing all the operations of the ordinary arithmetic within an enlarged
arithmetic. Greenleaf goes on to state that there is no reasonable way to assign a meaning to
the operations in Equation (48) because  does not behave like an ordinary complex
number. This is an appeal to ignorance, and was reasonable in the age before division by
zero. Today, all of these operations are defined in both transreal and transcomplex
arithmetic. We maintain that  is a transcomplex number but, in this section, we elucidate
various roles of complex infinity which the Riemann sphere conflates.

Notice that Greenleaf falsely states that  is a determinate form according to
the rules he has set up. For this form to be determinate, Greenleaf would have to have

. That is, he would have to replace  by . To be Charitable, this
is a simple slip, and we allow that Greenleaf agrees with us on the well formed nature of

. Greenleaf treats  as an unsigned object. That is, complex  is a projective
infinity in contrast to the signed, affine infinities,  and , in transreal arithmetic. This
different treatment of the sign of infinity prevents an ordinary enlargement of complex
arithmetic from containing an ordinary enlargement of real arithmetic. By contrast,
transcomplex arithmetic provides, firstly, signed infinities, , at a real angle defined
uniquely by , , and provides, secondly, an unsigned infinity, , at the angle
nullity. We show, below, that Greenleaf’s  behaves like . Thus, we have no
difficulty in taking transreal arithmetic as a proper subset of transcomplex arithmetic.
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The equations (49) do not have the highest information content when any consistent
selection of , ,  has infinite . We give these equations more information by splitting the
equations into two computational paths, as the parameter is or is not infinite, and by lexically
cancelling infinite terms prior to establishing the simplified equations as a definition. Thus,
when  we simplify the equation for  as follows:

(51)

Now, when  we continue the simplification as:

(52)

The equation for  is obtained similarly. The equation for  is obtained as:

(53)

and when  we have

(54)

Note, very carefully, that we have searched for and found computational paths with a
high information content. These particular paths give finite results for infinite parameters.
The search for such paths currently requires mathematical skill. There is, at present, no
known algorithm which reduces a wide class of expressions to highest information content,
though the class of fractional linear transformations can be reduced algorithmically ([8] p.
221). Put another way, when we set out a total set of equations in a transarithmetic we must
sometimes supply boundary conditions for the non-finite parameters. Using the boundary
conditions we have just computed gives:

(55)

Now, for any consistent choice of ,  and , with  infinite, we have
, which is the north pole, , as Greenleaf requires. Similarly, for
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 we have , which is the south pole, as Greenleaf requires.
But Greenleaf does not consider the case of any consistent choice of ,  and , with 
nullity, which leads to . Thus, we have computed all of Greenleaf’s
equations (49) using transreal arithmetic to evaluate a set of computational paths which
classifies all possible transreal solutions. In other words, we have put Greenleaf’s intuitive
equations (47) on the firm axiomatic basis of transreal arithmetic [1], and we have used this
arithmetic to solve Greenleaf’s equations for the projection of the whole of the ordinary
extended-complex plane onto the whole of the Riemann sphere.

Greenleaf also gives equations for the projection of a point on the Riemann sphere onto
the ordinary extended-complex plane, Equation (50). We now compute these projections
using transreal arithmetic, taking care to distinguish Cartesian three-tuples  from
transcomplex three-tuples .

We take it as given that the generality of the Riemann sphere projects uniquely onto the
complex plane. We now compute the projection at the two poles. At the south pole, with
Cartesian co-ordinates , we have  with  and radius

, because:

(56)

This implies that the transcomplex co-ordinates of  are , corresponding to a
radius of zero at angle zero.

At the north pole, with Cartesian co-ordinates , we assert that  and
compute , despite the fact that there is no complex  in this case:

(57)

The terms ,  give rise to , compare

with [6]. This solution is also given by , and
similarly for . Hence, an attempt to write  as a complex number fails, because the putative

 encodes no information about the known radius . By contrast,  may be
written as a transcomplex three-tuple, , which encodes all of the information
about this point.

This is an extremely important result. It is already known that the equations governing
the projection of the Riemann sphere cannot be solved at the north pole using real
arithmetic. In other words, it is already known that algebraic geometry breaks down in this
case. But these same equations do give a solution when we use transreal arithmetic. Thus,
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transreal arithmetic extends algebraic geometry so that it obtains a solution in at least this
one, singular, configuration. We expect that all singular configurations in algebraic
geometry can be solved using transreal arithmetic, because this arithmetic is total; but this
question can be settled only by further research.

Thus far, we have shown that Greenleaf’s account of the Riemann sphere holds
everywhere on the sphere when transreal arithmetic is used in place of real arithmetic, and
his extension of it, Equation (47), and where the ordinary complex infinity is replaced by
transcomplex . We now summarise all projections onto transcomplex numbers in
Figure 7, but first we introduce the wheel at infinity.

Figure 6, below, shows two wheels. A wheel is a circle, or rim, together with a point,
called the hub, which is shown at the centre of the circle. The hub is co-punctal with a point
on an axle. The wheel at the north pole is a finite wheel. Its hub is the north pole, with
Cartesian co-ordinates, . Its rim contains the points with transcomplex co-ordinates,

, with  and  for finite , and has unit diameter. The wheel at
infinity is a non-finite wheel. Its hub has transcomplex co-ordinates , which is a
point at infinite distance, and nullity angle, from the origin of the complex plane. Its rim
contains the points with transcomplex co-ordinates, , with  and 
for finite , and has infinite diameter. The two-headed arrow indicates a bijective mapping
between the wheel at the north pole and the wheel at infinity.

Figure 6: The wheel at the north pole, , projecting onto the wheel at infinity.

Figure 7, below, shows an elevation of our extended Riemann sphere. The Riemann sphere
is shown as a thick circle with the points , , ,  lying on its circumference. The thick
horizontal line, labelled , , , is a side view of the unit wheel which projects onto the
wheel at infinity. The wheel at infinity lies beyond the bounds of the figure, but see Figure 6.
The thick vertical line, labelled , , together with the pole star, labelled , is an axle. It
projects onto the axle at angle nullity which may be taken, as a drafting convention, to
overlay the axle of the sphere, while remaining topologically distinct from it. The point  is
an isolated point. The axle is topologically closed at  and open at , as shown in Figure 4.
Correspondingly, the sphere is punctured at , making the sphere topologically open in a
neighbourhood about , but it is compactified by . The point at infinite radius and nullity
angle, with co-ordinates , labelled , is shown as being co-punctal with . These
two points are topologically distinct. The point at nullity, with co-ordinates ,
labelled , is shown as being co-punctal with , but is topologically distinct from it.
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Drawing  and  at these points is a convenient drafting convention, but is not essential to
the projections. The point labelled  projects to  on the axle at angle nullity. As a
drafting convention, it is drawn above the origin of the complex plane and, identically,
above the origin of the finite part of the transcomplex plane. The medium horizontal line,
passing through , , , is a side view of a central part of the complex plane. The whole
plane extends beyond the bounds of the figure. The thin solid lines are projections of finite
length. All projections are taken in the direction from , passing through some, not-
necessarily distinct, point to a terminal point. This directionality ensures that the north pole
projects onto distinct points on the rim at infinity, and is consistent with both finite and
nullity projections – so it is convenient to demand that this directionality holds everywhere.
This drafting convention requires that the point at nullity is shown on the axle and below the
origin of the complex plane, whereas there is freedom to show it above the origin in
Figure 4. The pole star, , is a point at unit distance below the origin. It projects onto the
point at nullity, . The thin dotted lines are projections of non-finite length. The projections
from , passing through  and  to, respectively,  and  (beyond the bounds of the
figure), are projections of infinite length. The projection from  passing through  projects
to  and is also of infinite length, despite appearances in the diagram. Finally, the projection
from , passing through any other point on the axle, projects bijectively to a point on the
axle at angle nullity, and is of nullity length. As usual, a projection from  through 
projects onto the origin of the complex plane, which origin is co-punctal with .

Figure 7: Transcomplex superset of the Riemann sphere and its projections.

Now we see an infelicity in Greenleaf’s construction and uncover a new class of
transcomplex limits. Greenleaf assumed that the north pole maps onto a non-complex point,

, called complex infinity; but, as we have argued, it maps onto transcomplex 
which is a point at infinite radius and angle nullity. We also have points, , which are
points at infinite radius and finite angle. Now consider a function which grows
monotonically in magnitude, without finite bound. If this function does not converge to a
finite orientation then we define that its limit is , but if it does converge to a finite
orientation, , with  and , then we define that its limit is .
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Greenleaf takes all of these cases as equivalent. Consequently, that part of mathematical
physics that is based on complex analysis, ignores nullity limits and conflates all of the
angles of infinite limits, whereas we preserve the angle information for all limits, whether
finite or non-finite. Consequently, we are better able to take on the analysis of physical
singularities.

It should be known to the reader that Greenleaf’s presentation of the Riemann sphere is
just one of several parameterisations that appear in the mathematical literature. We have
quoted extensively from Greenleaf because he is particularly frank in discussing the
motivation for his developments. This is a strength in a text book. Different,
parameterisations of the Riemann sphere lead us to change the details of our criticism, but
we arrive at the same conclusion: transcomplex arithmetic is more capable than complex
arithmetic at computing properties at singularities.

8. Transcomplex Arithmetic

Now that we have defined some geometrical properties of the transcomplex numbers and
their projections, it remains to define transcomplex arithmetic. We begin by reviewing non-
finite angles and distances. We find that there is just one non-finite angle: nullity; but there
are two non-finite distances: infinity and nullity. We then give algebraic definitions of the
operations of multiplication, division, addition, and subtraction. After which, we give
geometrical constructions for these operations. Finally, we give various proofs showing how
transcomplex arithmetic relates to other arithmetics.

8.1 Non-Finite Angle

Consider the Taylor series for each and every real trigonometrical series. Such series, ,
are a function of an angle, , and have alternating positive and negative terms. But

 and  and  and  so the sum of the series for
 is . Compare with [6]. But then all non-finite angles give rise to the same

non-finite sum, nullity, and we define that the angle nullity is the canonical form of these
non-finite angles. In particular, when , we have  and

. Furthermore,  when  or
. In the body of this paper we always construct cosines and sines using these

relationships, but the appendix transarith.p gives a more general form of  that is
a total function of all transreal . See the procedure stdrcs in the appendix.

The above result, obtained from the Taylor series of the real trigonometrical functions,
is consistent with results obtained from geometry. For example, consider a right triangle
with unit hypotenuse, as used to define the real trigonometrical functions via ratios of the
lengths of sides of the triangle. Now dilatate the triangle by zero so that all lengths are zero.
Consequently all ratios are nullity. We define that the angle the zero hypotenuse makes with
the -axis is nullity. Consequently, all trigonometrical functions of angle nullity are nullity
and the arc-trigonometrical functions of nullity are nullity, as above.
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8.2 Non-Finite Distance
The axioms of transmetrics are given in [5]. These differ from the axioms of metrics only in
that greater-than-or-equals is replaced by not-less-than. This substitution admits the
distance nullity. Transreal arithmetic admits the distance infinity. For convenience, the
axioms defining a transmetric, , are repeated here:

(58)

(59)

(60)

(61)

The paper [5] gives the Euclidean transmetric for transreal numbers  as follows.

(62)

It should now be understood that when  are transcomplex, the Euclidean
transmetric, , is defined on , with , as:

(63)

Note the simplification .

8.3 Shorthand Polar Form of Transcomplex Numbers

We have defined that a transcomplex number, , has transreal components  such
that , and ,  for any transreal . This is the form in which all
transcomplex arithmetic operates. However, once the non-finite angle and distances are
understood, it becomes natural to refer to these three-tuples by their polar from as two-tuples

. Here  is the argument of an underlying angle, , given by, for example,

 so that  with  for some integer .

8.4 Definition of the Arithmetical Operators
We define transcomplex multiplication and division so that they contain polar-complex
multiplication and division. In fact, the transcomplex definitions are lexically identical to the
polar definitions when polar operations on angles are expanded by trigonometric identities
to operations on cosines and sines. Addition is implemented via Newton’s parallelogram
rule with an extension to deal with the sum of a vector at angle nullity with a vector that is
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not at angle nullity. Note that Newton’s rule, [12] pp 111-112 & 417-418, is more general
than the modern parallelogram rule, as illustrated in the next section. Subtraction is
implemented as addition with the subtrahend being produced by multiplying an addend by a
half rotation in the complex plane so as to negate it.

All of the operators have their usual precedence. They are implemented in the on-line
appendix transarith.p. Geometrical constructions for the arithmetical operators are given in
the next section.
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8.5 Geometrical Construction of the Arithmetical Operators

Figure 8 shows a Cartesian co-ordinate frame with axes labelled , , . The - and -axes
have arrow heads, showing the sense of the axis and indicating that the axis extends
indefinitely far in both the positive and negative directions. The -axis has no arrow head,
indicating that the whole of the non-negative transreal axis is drawn in the figure. Compare
with Figure 1 and Figure 4. A wheel with unit radius is swept along the -axis. Thus, a
polar-transcomplex number, , appears on the wheel at height , for any non-
negative transreal , and at an angle  about the -axis, measured anti-clockwise as viewed
from the positive -axis. However, transcomplex arithmetic is defined with  in the
principal range  or . A transcomplex number  lies on the
swept wheel, but the rim at zero, , with  finite, is identified with transcomplex

. The rim at nullity, , also with  finite, is identified with
. With these identifications, the points on the swept wheel are bijective

with the transcomplex numbers and all arithmetical operations on transcomplex numbers are
transformations of the swept wheel.

Figure 8: Wheel swept along a non-negative transreal axis.

It will be readily apparent, to the reader, that multiplications and divisions are screws in
the swept wheel, that is, they are a combination of a rotation and a translation in the swept
wheel. The construction of addition is more involved.

Notice that multiplication and division – Equations (64), (65) – involving any number at
angle nullity, produce a resultant in which the phase (angle) collapses to nullity, but the
product or quotient of the magnitudes (radii) is maintained. Thus:

(68)

(69)

x y z x y

z

z
r θ,( ) z r=

r θ z
z θ

π θ π≤<– θ Φ= r θ,( ) r c s, ,( )≡
0 θ,( ) θ

0 0,( ) 0 1 0, ,( )≡ Φ θ,( ) θ
Φ Φ,( ) Φ Φ Φ, ,( )≡

Φ

∞

0
x

y

r

θ

z

r1 c1 s1, ,( ) r2 Φ Φ, ,( )× r1 r2× Φ Φ, ,( )=

r1 c1 s1, ,( ) r2 Φ Φ, ,( )÷ r1 r2÷ Φ Φ, ,( )=
48



By analogy with this behaviour, Equation (66) specifies:

(70)

And this carries over, identically, to subtraction so that the resultant magnitude is the sum,
not the difference, of the magnitudes. Consequently, absolute arithmetic is implemented on
the axle at angle nullity and signed arithmetic is implemented on the cylinder, or swept rim,
comprising all of the rims – with the wheels at zero and nullity having identified parts so that
they have no positive or negative sign, as usual in real and transreal arithmetic.

(71)

It is convenient to give the proof in polar-transcomplex form:

(72)

All other cases involving one or two arguments at angle nullity are obtained similarly.
Thus, the addition or subtraction of any numbers, at least one of which is at angle nullity,
involves the projection of any arguments on the rim of a wheel to the hub of the wheel,
followed by a translation up the axle at angle nullity to a transreal distance of . This
geometrical operation is in addition to Newton’s parallelogram rule and provides the one
case of transcomplex addition that Newton does not: the sum of a number at angle nullity
with a number that is not at angle nullity.

Figure 9: Vector sums in the plane of a wheel.

Newton, [12] pp 111-112 & 417-418, defines what we now call the vector sum by a
geometrical process of laying off the sum at every point along the resultant until the end
point is arrived at. Whereas, the modern parallelogram rule sums from beginning to end of a
vector without considering intermediate points. The modern method fails for all non-finite
vectors, but Newton’s method succeeds for every combination of finite and non-finite
vectors, except the sum of a vector at angle nullity with a vector that is not at angle nullity.
We supply this missing case above, but it is difficult to give an accurate numerical
implementation of integration so, instead, we use a different geometrical construction which

r1 c1 s1, ,( ) r2 Φ Φ, ,( )+ r1 r2+ Φ Φ, ,( )=

r1 c1 s1, ,( ) r2 Φ Φ, ,( )– r1 r2+ Φ Φ, ,( )=

r1 θ1,( ) r2 Φ,( )– r1 θ1,( ) r2 Φ π+,( )+ r1 θ1,( ) r2 Φ,( )+ r1 r2+ Φ,( )= = =

r1 r2+

(a) (b)

t1′
t2′

t3′

t1′

t2′

t3′
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projects all vectors to finite length, performs modern vector addition on the transformed
vectors, and then projects the resultant to its true length. This true length may be non-finite.
We now describe this construction by working through the top-level “otherwise” branch of
Equation (66), relating this to Figure 4, Figure 8 and Figure 9.

Having already dealt with a vector or vectors at angle nullity, we now deal with vectors
at finite angles. The transcomplex number  lies on the swept wheel, Figure 8,

at height . It lies at angle  on the rim of this wheel. Compare with the polar-

transcomplex points , ,  in Figure 4. Similarly,  lies on the

wheel at height . It lies at angle  on the rim of this wheel. The point  is projected

orthogonally along the -axis as  onto the plane of the wheel at height . If

 then the vector  is of unit length. Otherwise  is of length .

Similarly, the point  is projected orthogonally as  onto the plane of the wheel at height

. Two such configurations are shown in Figure 9 (a), (b). With this construction
all of the projected vectors are of finite length, all information about the original lengths is
encoded, and the original angles are preserved. The vectors ,  are then summed using

the modern parallelogram rule giving a resultant , where  are clamped

to the angle zero if . The vector  is then scaled to its final magnitude by

 and is written into the required wheel. If  then the angle
collapses, as given by identification within the wheels at heights zero and nullity.

One subtlety of this geometrical construction is that it correctly computes transreal
 and, more generally, it computes transcomplex . The

reason is that  projects orthogonally onto the wheel at height

 with  whence ,
as required.

When floating-point arithmetic is used, the above calculations generally have some
rounding error so that the lengths of computed vectors and their angles are approximate, but
bounded. When vectors round off to infinite length, the error is bounded by infinity – which
is an exceptionally loose bound. But if the length or angle round off to nullity then the error
is neither small nor large, but it is unbounded. An error of nullity represents a maximal loss
of information. Such is the case, for example, when vectors of infinite length and nearly
opposite angles are added so that their sum rounds off to the nullity vector; or where a vector
of exactly infinite length is multiplied by a vector of inexact (underflowed) length zero.
However, it is sometimes possible to recover some of the information about length or
magnitude by tracing the computational paths that produced the inexact finite or non-finite
numbers. And wherever this strategy succeeds, it would be possible to re-work the algorithm
so that it responds to inexact flags, in its floating-point values, at appropriate points in a path
or confluence of paths. Therefore, it is important that all floating-point numbers, whether
finite or non-finite, carry an inexact flag through a computation until the inexactness can be
used or reported. This is an improvement on IEEE floating-point arithmetic in that all
floating-point objects carry diagnostic information, rather than having a hardware
implementation provide this facility only for NaNs. Having an inexact flag universally
available might encourage programmers to producer maximally accurate programs.

Note that it is possible to compute exactly opposite angles in floating-point arithmetic
using the formulae  and , where  is the floating-point

t1 r1 c1 s1, ,( )=

z1 r1= θ1

0 0,( ) r θ,( ) ∞ θ,( ) t2 r2 c2 s2, ,( )=

z2 r2= θ2 t1

z t1′ z r1 r2+=

r1 r1 r2+= t1′ t1′ r1 r1 r2+( )÷

t2 t2′

z r1 r2+=

t1′ t2′

t3′ r3′ c3 s3, ,( )= c3 s3,

r3′ 0= t3′

r3 r3′ r1 r2+( )×= r3 0 Φ,{ }∈

∞ ∞– Φ= ∞ θ,( ) ∞ θ,( )– Φ Φ,( )=
t1 t2– ∞ θ,( ) ∞ θ,( )–=

z r1 r2+ ∞= = t3′ 1 θ,( ) 1 θ,( )– 0 θ,( )= = r3 r3′ r1 r2+( )× 0 ∞× Φ= = =

θ1 π 2÷ e+= θ2 π– 2÷ e+= π
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representation of pi and  is an arbitrary angle. Here the opposition of angles is carried
explicitly in the sign bit. The magnitudes, and therefore the significands, of  and 
are equal and  is identically equal. Hence the opposition is exact for all real values of .
All non-finite values of  result in an angle of nullity so opposition is exact in this case, too.
Hence, opposition is exact for all transreal . (However, implemented trigonometrical
functions do not necessarily preserve this exact opposition. See the on-line appendices.)

The reader may find that having a geometrical interpretation of the arithmetical
operators aids in their understanding and application. One should not forget, however, that
topological considerations also apply, as in our earlier discussion of physical singularities
and limits in analysis. This is no surprise. Real arithmetic also requires such consideration
for its proper application, if it applies at all.

8.6 Relationship of Transcomplex Arithmetic to Other Arithmetics
Having introduced algebraic and geometrical constructions of the basic arithmetical
operators of addition, subtraction, multiplication, and division, we now show how
transcomplex arithmetic relates to other arithmetics.

Complex numbers, , are usually defined in terms of Cartesian-complex numbers,
, with  being the unit complex-vector. This construction has an

implicit unit real-vector, , so that Cartesian-complex numbers are given more explicitly by
 with ,  being dimensionless, that is scalar, numbers. However, in

what follows, we use the more popular, and more compact, form ,
recalling, where necessary, that  has dimension real and  is dimensionless. In what
follows, the symbol  denotes a radius, as it has done in most of this paper, and , ,  are,
respectively, the radius, cosine and sine of a transcomplex number .

With the usual notation, [7] [8], Cartesian-complex numbers, , are given by
 with  on the real axis and  on the imaginary axis; polar-complex numbers, ,

in the principal range, , are given by ; Eulerian-complex numbers,

, in the above principal range, are given by , where  is the complex
unit, , in three-tuple form; and Riemannian-complex numbers, being all of the
Cartesian-complex, polar-complex, and Eulerian-complex numbers, with complex infinity,
that arise from projection of the Riemann sphere, [8] [9] [10], are described by Cartesian-
complex, polar-complex, or Eulerian-complex numbers, together with the point at infinite
radius and nullity angle, , which replaces the ordinary complex infinity.

We will prove that transcomplex arithmetic implements the Cartesian-complex
operations of addition, subtraction, multiplication, and division.

Polar-complex arithmetic defines multiplication as the composition of a dilatation and
rotation: . Division is defined similarly. Here, 

and  may be taken to range over all real numbers so that polar-complex numbers and their

products and quotients lie somewhere on a Riemann surface. Alternatively,  may be taken

in a principal range, for example , so that polar-complex numbers and their
products and quotients fill out the whole of the complex plane. A particular difficulty with
polar-complex form is that when the radius is zero, the angle is undefined, in other words,
the angle is a real variable. Transcomplex arithmetic avoids this difficulty, at zero radius, by
identifying all finite angles with the angle zero. Polar-complex form does not define

e
π 2÷ π 2÷–

e e
e

e

z

z x y,( ) x iy+= = i 1–=
r

z x y,( ) rx iy+= = x y
z x y,( ) x iy+= =

x y
r r c s

r c s, ,( )
x y,( )

rc rs,( ) x y r θ,( )
π θ π≤<– r arctan2 c s,( ),( )

n reiθ= n rc irs,( )= i
1 0 1, ,( )

∞ Φ Φ, ,( )

r1 θ1,( ) r2 θ2,( )× r1 r2× θ1 θ2+,( )= 0 ri ∞≤ ≤

θi

θi

π θi π≤<–
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operations of addition and subtraction. Instead polar-complex numbers are cast to Cartesian-
complex form, are added or subtracted, and the result is cast back to polar-complex form.
This round-trip of casts generally involves the computation of both trigonometrical and arc-
trigonometrical functions, making the operation slow and inaccurate on a digital computer. It
is already known that polar-complex arithmetic, in a principal range, is a proper subset of
Cartesian-complex arithmetic so nothing remains for us to prove here.

Eulerian-complex arithmetic defines multiplication as, 

. Division is defined similarly. Addition is defined as

, and subtraction is defined

similarly. Here  so that Eulerian-complex numbers and their products, quotients,

sums, and differences fill out the whole of the complex plane. In every case the arithmetical
operations are Cartesian-complex, as shown by the right most part of the above equations, so
nothing remains for us to prove here.

The Riemannian-complex numbers may be presented as abstract projections which
make no particular commitment to the form of complex-co-ordinates. However, projection
of the Riemann sphere does fill out the whole of the complex plane so that arithmetic in this
plane is obliged to be Cartesian-complex or isomorphic to it. We deal with this case in our
proof that transcomplex arithmetic implements Cartesian-complex arithmetic. However, we
must also deal with arithmetic on complex infinity. Greenleaf gives the required operations
in Equation (47), but as transreal arithmetic is defined to be totally commutative [1] we need
only prove the following, where complex infinity, , is transcomplex . Note that
transcomplex arithmetic is a proper superset of Riemannian-complex arithmetic because

 is transcomplex, but is not Riemannian-complex.

(73)

We also wish to prove that transreal arithmetic is a proper subset of transcomplex

arithmetic. It is trivial to prove the proper part:  is transcomplex but not transreal.
The finite part is given by the proof that transcomplex arithmetic implements Cartesian-
complex arithmetic, because real arithmetic is a proper subset of complex arithmetic. Some
of the infinite part is given by proving Equations (73) where the symbol  denotes transreal
infinity in transcomplex form: . The remaining non-finite part is given by proving
the Equations (74), with the same interpretation of the symbol , and where the symbol 
denotes transcomplex nullity . Compare with Equations (48).

When all of this is proved we will have shown that transcomplex arithmetic is a
universal complex arithmetic in as much as it contains the above arithmetics in the principal
range.

n1 n2× r1e
iθ1 r2e

iθ2×= =

r1 θcos r1i θsin+( ) r2 θcos r2i θsin+( )×

n1 n2+ r1e
iθ1 r2e

iθ2+ r1 θcos r1i θsin+( ) r2 θcos r2i θsin+( )+= =

0 ri ∞≤ ≤

∞ ∞ Φ Φ, ,( )

Φ Φ Φ, ,( )

∞ z× ∞= for z 0≠  in C
∞ z+ ∞= for all z in C
∞ z– ∞= for all z in C

z 0⁄ ∞= for z 0≠  in C
z ∞⁄ 0= for all z in C

∞ ∞× ∞=  

∞ 2 2, ,( )

∞

∞ 1 0, ,( )

∞ Φ

Φ Φ Φ, ,( )
52



(74)

8.7 Proof

In this subsection, we give the proofs identified in the previous subsection. Here  is an
arbitrary, fixed, positive, real number: . Consequently, the real numbers equate to
the transcomplex numbers, , as:

(75)

The complex unit, , equates to a transcomplex number  as:

(76)

The Cartesian-complex numbers, , relate to the transcomplex numbers,
, as:

(77)

When presenting proofs, we use the ordinary conventions of arithmetic. Multiplication
of expressions, other than digit strings, may be written implicitly, . Division may
be written using a obelus, vinculum, or else a solidus, each with its usual bracketing:

.

8.7.1 Cartesian-Complex Multiplication
It is to be proved that transcomplex multiplication implements Cartesian-complex
multiplication.

Cartesian-complex multiplication has:

(78)

∞ ∞+ ∞=
∞ ∞– Φ=
∞ ∞÷ Φ=
0 0÷ Φ=
∞ 0× Φ=

Φ z+ Φ= for all z in RT

Φ z– Φ= for all z in RT

Φ z× Φ= for all z in RT

Φ z÷ Φ= for all z in RT

p

0 p ∞< <

r c s, ,( )

0 0 1 0, ,( )=
p p 1 0, ,( )=
p– p 1 0,–,( )=

i 1–= r c s, ,( )

i 1 0 1, ,( )=

x y,( ) x iy+=

r c s, ,( )

x y,( )
x2 y2+ x x2 y2+÷ y x2 y2+÷, ,( )  :  0 x2 y2+ ∞< <

x2 y2+ 1 0, ,( )  :  x2 y2+ 0=⎩
⎪
⎨
⎪
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=

x y× xy=

x( ) y( )÷ x
y
-- x( ) y( )⁄= =

x1 iy1+( ) x2 iy2+( ) x1x2 y1y2–( ) i x1y2 x2y1+( )+=
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Whence: 

(79)

Now, for all products that do not involve two zero factors, we have  and:

(80)

(81)

Lemma: let  when  then:

(82)

This completes the lemma. Now, returning to the proof, the corresponding transcomplex
multiplication of non-zero factors is:

(83)

This completes the proof that transcomplex multiplication implements Cartesian-
complex multiplication, not involving a zero factor. All multiplications involving one or two
zero factors are obtained similarly. Q.E.D.
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8.7.2 Cartesian-Complex Division
It is to be proved that transcomplex division implements Cartesian-complex division.

For all finite, non-zero denominators, , Cartesian-complex division has:

(84)

Whence:

(85)

Now, for all non-zero numerators, we have  and:

(86)

(87)
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The corresponding transcomplex division with a non-zero numerator, , is:

(88)

This completes the proof that transcomplex division implements Cartesian-complex
division, not involving a zero numerator. Division involving a zero numerator is obtained
similarly. Q.E.D.

8.7.3 Cartesian-Complex Addition and Subtraction
It is to be proved that transcomplex addition and subtraction implement Cartesian-complex
addition and subtraction.

Transcomplex subtraction is defined in terms of addition, see Equation (67), so that
every subtraction becomes an addition:

(89)

Consequently, it is necessary to prove only that transcomplex addition implements
Cartesian-complex addition. We note, in passing, that the relationship just derived,

, is more succinct than Equation (67) so it
might be preferred as a definition.

Cartesian-complex addition has:

(90)
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Now, for non-zero sums we have  and:
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The corresponding transcomplex addition, with a non-zero sum, has the single side
condition , which implies . Now:

(94)

Whence, observing the above side condition, Equation (66) gives:

(95)

(96)

(97)

Similarly:
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Now:
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(100)
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Now:

(102)

Similarly, , as required.
This completes the proof that transcomplex addition implements both Cartesian-

complex addition and subtraction, not involving zero sums. Zero sums are obtained
similarly. Q.E.D.

8.7.4 Arithmetic Involving Riemannian-Complex Infinity
It is to be proved that Transcomplex arithmetic implements Riemannian-complex arithmetic.
Given the proofs above, it remains only to prove that arithmetic on complex infinity is
supported.

Equation (73) give  for complex . Taking complex infinity, , as
transcomplex infinity at angle nullity, , gives:

, as required. (103)

The remaining cases of Equation (73) are obtained similarly. Q.E.D.

8.7.5 Transreal Arithmetic
It is to be proved that transcomplex arithmetic implements transreal arithmetic. Given the
proofs above, it remains only to prove the non-finite cases.

Equation (73) give . Taking the symbol, , as transreal infinity, being
transcomplex infinity on the real axis, , and taking  as real and strictly positive,
being transcomplex and non-zero on the real axis, , gives:

, as required. (104)

The remaining cases of Equation (73) and (74) are obtained similarly. Q.E.D.

9. Transcomplex Exponential, Logarithm, and Raising to a Power

In this section we present preliminary totalisations of the exponential and logarithmic
functions, and of the operation of raising a number to the power of a number.

There are two problems when generalising a power series from its ordinary form to
transnumbers. The first is that we must distinguish the cases of taking the series
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asymptotically to infinity, that is over all natural numbered indices, and exactly to infinity,
that is over all natural numbered indices and the index . Secondly, we cannot always elide

a term from a power series by zeroing it. For example, . We

handle this by introducing a Boolean elision operator, , such that the ’th term is

contained in the series if  and is elided from the series if .

In general, we write a power series, , taken up to the ’th term, as an infinite sum with

all  when :

(105)

Here  may be a finite number, an indefinitely large natural number, , or infinity, . In
deference to existing notations, we write:

 where the term  is substituted by (106)

 where the term  is substituted by (107)

With this arrangement, all transreal power series taken exactly to infinity have a fixed
sum and all transcomplex power series taken exactly to infinity have a fixed sum of
magnitudes, but may currently have an undefined sum of phases.

We present this general notation as an aid for the reader who wishes to explore
transpower series. In the special case of the transcomplex exponential we take all ,

except . We also provide boundary cases to totalise the exponential.

(108)

As usual, the logarithm is defined to be the mapping from the image of the exponential
function to its pre-image. For the transreal exponential,  and , this
mapping is an inverse, see [6], but it is not an inverse in the transcomplex case. Nonetheless,

we can exploit the assumed identity  to obtain a function which raises any
transcomplex number, , to the power of any transcomplex number . Thus, the

function  is defined as:
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(109)

Here  is any general, non-negative constant. In other words,  is finite, positive, and not
equal to unity. See [6] for some special properties of unity. It is convenient to choose  equal
to the radix of the floating-point system in which transcomplex arithmetic is implemented.
The on-line appendices are implemented in binary floating-point arithmetic and take .
See trans_exp, trans_log, trans_power in the on-line appendices.

Note that the treatment of raising to a power in [6] is now seen to be defective.

10. Discussion

We have proved, elsewhere [1], that division by zero, in transreal arithmetic, is consistent if
real arithmetic is, and have noted, in the present Introduction, various other methods for
dealing with division by zero. We maintain that transreal arithmetic is the pre-eminent
development of real arithmetic, because all of its algorithms are universally accepted
algorithms of real arithmetic. Consequently, transreal arithmetic is identical to real
arithmetic in all finite computations; but where real arithmetic fails to apply, to any case
involving division by zero, transreal arithmetic continues to hold. We can see no reason why
anyone would prefer a partial arithmetic over a total arithmetic.

Of course, it is not enough that transreal arithmetic is consistent, it must also be useful if
it is to be accepted as the natural successor to real arithmetic. Indeed, the whole of this paper
can be read as an argument for the usefulness of transreal arithmetic in mathematics,
computation and physics.

The first argument for usefulness is that transreal arithmetic is simple. It is so simple
that it can be taught to twelve-year-old children. And transreal arithmetic is useful to
children. Those who develop in mathematical and physical understanding to the point where
they can apply Newton’s laws of motion, find that they can solve problems involving
physical singularities that currently defeat professional physicists. If transreal arithmetic is
eventually accepted by society then it will be necessary to teach it to children to prepare
them to take their place in the world. In the mean time, transreal arithmetic offers an
interesting diversion that might be used in the classroom to motivate the study of accepted
interpretations of mathematics and physics. But transreal arithmetic is a serious business, it
stands as a challenge to teachers: why continue to teach children a mathematics that is
guaranteed to fail in some cases, when a total arithmetic could be taught?

A second argument for the usefulness of transreal arithmetic is that it provides a natural
development of ancient forms of mathematics. All of Newton’s Arithmetica Naturalis ([15]
vol. 5, especially pp. 52-109) can be read as applying to transreal numbers. The methods of
proportions, in Book 5 of Euclid’s Elements ([31] vol 2), dating back to the 3rd Century
B.C., can be read as applying to transreal numbers; as can the methods of proportions, in
Book 7 of Euclid’s Elements ([31] vol 2), that date back to Pythagoras in the 6th Century
B.C., and earlier to the Babylonians. Thus, transreal arithmetic can be used as a vehicle to
introduce the history of mathematics to learners; can stand as a philosophical and historical
example of monotonic theory development in science; and can reassure users that transreal
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arithmetic is compatible with, and an improvement on, all of the real arithmetic that went
before. This might encourage others to seek further improvements in mathematics.

Transreal arithmetic is also psychologically appealing because it provides a Gestalt of
Good Form. The history of mathematics can be read as the, somewhat haphazard,
development of total systems of mathematics. Thus, natural arithmetic is totalised by integer
arithmetic, which is totalised by rational arithmetic, which is totalised by real arithmetic,
which is totalised by transreal arithmetic, which is totalised by transcomplex arithmetic,
which has yet to be totalised by transquaternion and transoctonion arithmetics. But the
appeal is not purely psychological, transreal arithmetic has advantages for computation, and
might also have advantages for mathematical physics.

We have described, here and elsewhere [5], how transreal arithmetic makes computer
arithmetic more efficient, and how it makes it easier and safer to write computer programs.
We see no useful purpose in wasting  states in every double precision,
IEEE floating-point core that has been manufactured to date, nor of encouraging costly and
dangerous failures in the development of software by specifying a complicated numerical
and non-numerical ordering when a much simpler transreal ordering is available. We look to
the practical advantages of transreal computation to draw society into its use.

Some contemporary physicists assert that it is impossible to divide by zero. For them, it
is mathematically impossible that the universe adopts any singular configuration so they
introduce one or more cosmic censors which cut off every possible, physical, occurrence of
division by zero. For us, division by zero is an elementary property of transreal arithmetic so
we have no a priori reason to suppose that cosmic sensors exist. If such censors do exist,
then that is a property of the physical universe which remains to be demonstrated
empirically. In the mean time, we have shown how school children might carry out
theoretical calculations on gravitational and electrostatic singularities using neo-Newtonian
physics. We argue that as transreal arithmetic is total, it will be able to compute solutions at
any singularities whatever, though, in many cases, the mathematical procedures needed to
carry out the computations remain to be developed.

We also argue that transreal arithmetic is useful because it leads to the development of
transcomplex arithmetic, which is useful, in turn, because it is a universal complex-
arithmetic. In particular, it performs all of the roles of Cartesian-complex and Eulerian-
complex arithmetics which are very popular in engineering and physics. Applications
depending on the Riemann sphere and fractional linear transformations are also improved.

However, we readily acknowledge that our results relating to the transcomplex
exponential and transcomplex logarithm are preliminary. Experience might cause us to
revise them. To this extent, then, the operation of raising a transcomplex number to a
transcomplex power is subject to revision. And, as our motive is to create a useful
mathematics of division by zero, we will revise any part of transmathematics that is
contradicted by experience. Thus, the whole of transmathematics is subject to revision. In
particular, we might revise our decision to identify the circle at nullity with the point at
nullity, and we might revise our arrangement of the addition of a vector at a finite angle with
a vector at a non-finite angle.

Returning to our cautionary tale, some physicists draw grand conclusions from the
supposed impossibility of dividing by zero. One such, goes like this: Einstein’s theory of
relativity allows gravitational singularities, these involve division by zero, but division by
zero is mathematically impossible, therefore Einstein’s theory of relativity is not a complete
description of physical gravity. The fault in this line of reasoning is that division by zero is
possible. Einstein’s theories might, or might not, be an adequate description of physical
gravity; but that question is to be settled by experiment, not by an armchair appeal to
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fanciful limitations of mathematics. We see no reason why contemporary physicists should
prefer a mathematics that fails, in some cases, over a total mathematics. We invite everyone
to consider Paul Dirac’s views on the advancement of mathematical physics ([34], p. 60).

The steady progress of physics requires for its theoretical formulation
a mathematics that gets continually more advanced. This is only
natural and to be expected. What, however, was not expected by the
scientific workers of the last [19th] century was the particular form
that the line of advancement of the mathematics would take, namely, it
was expected that the mathematics would get more and more
complicated, but would rest on a permanent basis of axioms and
definitions, while actually the modern physical developments have
required a mathematics that continually shifts its foundations and
gets more abstract. Non-euclidean geometry and non-commutative
algebra, which were at one time considered to be purely fictions of the
mind and pastimes for logical thinkers, have now been found to be
very necessary for the description of general facts of the physical
world. It seems likely that this process of increasing abstraction will
continue in the future and that advance in physics is to be associated
with a continual modification and generalisation of the axioms at the
base of mathematics rather than with a logical development of any
one mathematical scheme on a fixed foundation.

– Paul Dirac [34], p. 60.

We have modified the axioms of arithmetic so as to admit division by zero, making
transreal arithmetic total [1], and more abstract than real arithmetic, in that it adopts the
number nullity. We cannot see any advantage in requiring, as our contemporaries do, that
mathematics, in its very foundations of arithmetic, is partial, causing it to fail to apply in
some cases. We maintain that transreal arithmetic is natural and useful. Accordingly, we
invite the reader to join us in making the paradigm shift to transarithmetic that allows
division by zero everywhere in mathematics, computation and physics.

Now we come to the nub of the argument. There can be no compromise with readers
who continue to assert that division by zero is impossible. For them, we throw down a
definitive challenge. We assert that:

(110)

We challenge readers to say what useful purpose is served by requiring, further, that
. We can see no useful purpose in requiring that the existing algorithms of real and

complex arithmetic fail in the cases where any of . On the contrary, we maintain
that it is useful to allow the whole of existing mathematics to succeed in these cases, as, we
maintain, the examples in this paper, and our previous papers, have begun to show.

11. Future Work

As stated in the Introduction, there are many possible ways to develop transreal arithmetic
into transcomplex arithmetic. It would be useful to know if the current development is the
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best available. An efficient way to examine transcomplex arithmetic would be to develop it
into a transquaternion and then a transoctonion arithmetic. It might be that there is some
internal constraint within this hierarchy which militates in favour or against the current
development. Once all of these arithmetics have been fixed, it would be efficient to
axiomatise them all and give a single machine proof of their consistency. It would then be
helpful to translate the machine proof into human readable form so that it is accessible to a
wide range of mathematicians.

A more open-ended approach would be to develop various areas of mathematics,
looking for properties that militate for or against the current development of transcomplex
arithmetic. It would be possible to direct such developments toward test cases in
mathematical physics. For example, developing the vector transalgebra and transcalculus
necessary to totalise Maxwell’s equations ought to provide many cases for testing singular
behaviour in both classical and quantum electrodynamics. Simpler tests could also be made,
for example, by examining Newtonian collisions, oscillations, or once-off changes of
direction at the exact moment a change of motion occurs. It might also be productive to
examine the cases were cosmic censors are currently employed. Most generally, any aspect
of mathematics or mathematical physics might be examined to see how it bears on
transcomplex arithmetic.

A more practical approach is to develop computer systems that exploit transreal or
transcomplex arithmetic, as we have done, and to compare these with ordinary computer
systems. We have already presented evidence, here and in [5], that transreal arithmetic is
more efficient than ordinary systems of computer arithmetic. As another example, the use of
transreal and transcomplex arithmetic in theorem provers and computer algebra systems
ought to enforce the proper handling of guarding clauses [24] [35].

No doubt the reader can think of many specific ways of putting transcomplex arithmetic
to the test.

12. Conclusion

It is already known that transreal arithmetic is consistent if real arithmetic is. This paper
argues that transreal arithmetic is useful in mathematics, physics and computation. Firstly,
transreal arithmetic is so simple that it can be learned by the general reader, including
secondary-school children. Secondly, transreal arithmetic supports transfloating-point
arithmetic which is more efficient and safer than IEEE floating-point arithmetic. We leave it
as an open question as to whether it is better for transfloating-point arithmetic to double the
range of real numbers represented by the IEEE floating-point bits or whether it is better to
keep the range almost the same, while halving the smallest representable, non-zero, number,
thereby improving precision. We propose that transfloating-point arithmetics should reserve
one bit in their numbers to operate as an inexact flag. Thirdly, we observe that the totality of
transreal and transcomplex arithmetic might make it easier to evaluate guarding clauses in
theorem provers and computer algebra systems. Fourthly, transreal arithmetic extends
Euclid’s methods of proportions, and extends earlier methods. Fifthly, transcomplex
arithmetic unifies computations in all ordinary complex number systems and totalises them
so that arithmetic may be performed on any numbers, whether finite, including zero, or non-
finite. Sixthly, transreal arithmetic is a proper subset of transcomplex arithmetic, just as real
arithmetic is a proper subset of complex arithmetic. Seventhly, transcomplex arithmetic
provides a simpler interpretation of the point at infinity as a projection of the ‘north’ pole of
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the Riemann sphere, and develops the Riemann sphere into a total geometry over all finite
and non-finite transcomplex numbers. Eighthly, transcomplex numbers reduce the need for
cuts in complex domains. Ninethly, transreal analysis is a proper subset of transcomplex
analysis, despite the fact that real analysis is not a subset of complex analysis. Tenthly, in
contrast to the modern form of the parallelogram rule, which sums only finite forces,
Newton’s parallelogram rule allows the summation of finite, infinite and nullity forces,
except for the sum of a nullity and a non-nullity force. We extend Newton’s method to deal
with this case. Eleventhly, both transreal and transcomplex arithmetic extend all of the
physics in Newton’s Philosophiae Naturalis Principia Mathematica and enable the
computation of gravitational and electrostatic forces at singularities, thereby calling into
question the need for cosmic censors. We suppose that modern physics will be similarly
extended. Twelvethly, the introduction of division by zero is consistent with Paul Dirac’s
view, “  that advance in physics is to be associated with a continual modification and
generalisation of the axioms at the base of mathematics rather than with a logical
development of any one mathematical scheme on a fixed foundation.” Thus, we argue, by
weight of examples, that both transreal arithmetic, and its development into transcomplex
arithmetic, are useful. Thirteenthly, we give an implementation of transreal and
transcomplex arithmetic, as an online appendix, so that the reader may more easily explore
the developments presented here.

13. Supplementary material

The on-line appendix transarith.p is a text file that contains an implementation of transreal
and transcomplex arithmetic in Pop11 [37] [38]. The on-line appendix transarith is a text
file that contains documentation for this package, including instructions on how to install the
package on a Microsoft Windows or Unix platform. The documentation also contains a
transcript showing the computation of all of the numerical examples in this journal paper.
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