Transreal Calculus

Prof. Tiago S dos Reis Dr James Anderson FBCS CITP CSci

Agenda

- Advantages of transreal calculus
- Transdifferential calculus
- Transintegral calculus
- Value to science and society

Advantages of Transcalculus

Transcalculus

- Built on the foundation of transreal arithmetic
- Built on the foundation of transreal limits
- Allows the solution of mathematical and physical problems at singularities
- Makes mathematical software more reliable

Transreal Number Line

If
$$x_0 \in \mathbb{R}$$
 then $f'_{\mathbb{R}^T}(x_0) = f'(x_0)$

If $x_0 \in \mathbb{R}$ then $f'_{\mathbb{R}^T}(x_0) = f'(x_0)$

If $x_0 \in \{-\infty, \infty\}$ then $f'_{\mathbb{R}^T}(x_0) = \lim_{x \to x_0} f'(x)$

If
$$x_0 \in \mathbb{R}$$
 then $f'_{\mathbb{R}^T}(x_0) = f'(x_0)$

If $x_0 \in \{-\infty, \infty\}$ then $f'_{\mathbb{R}^T}(x_0) = \lim_{x \to x_0} f'(x)$

Otherwise

$$f'_{\mathbb{R}^T}(\Phi) = \Phi$$

Example

$$\frac{d}{dx}e^x = e^x \text{ for all } x \in \mathbb{R}^T$$

Define

 $\lim_{\substack{x \to x_0 \\ y \to x_0}} f(x, y) = L$

if and only if, given an arbitrary neighbourhood, *V* of *L*, there is a neighbourhood, *U* of x_0 , such that $f(x,y) \in V$ whenever $x \neq y$ and $x, y \in U \setminus \{x_0\}$

 $f: \mathbb{R}^T \to \mathbb{R}^T$ is differentiable at ∞ if and only if there exists

$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{f(x) - f(y)}{x - y}$$

 $f: \mathbb{R}^T \to \mathbb{R}^T$ is differentiable at ∞ if and only if there exists

$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{f(x) - f(y)}{x - y}$$

Whence

$$f'_{\mathbb{R}^{T}}(\infty) = \lim_{\substack{x \to \infty \\ y \to \infty}} \frac{f(x) - f(y)}{x - y}$$

If $f : \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \in \mathbb{R}$ and there is $\lim_{\substack{x \to x_0 \\ y \to x_0}} \frac{f(x) - f(y)}{x - y}$ then f is differentiable at x_0

If $f: \mathbb{R} \to \mathbb{R}$ is continuous at $x_0 \in \mathbb{R}$ and there is

 $\lim_{\substack{x \to x_0 \\ y \to x_0}} \frac{f(x) - f(y)}{x - y} \text{ then } f \text{ is differentiable at } x_0$

Whence

$$f'_{\mathbb{R}^T}(x_0) = \lim_{\substack{x \to x_0 \\ y \to x_0}} \frac{f(x) - f(y)}{x - y}$$

If $f : \mathbb{R} \to \mathbb{R}$ is continuously differentiable then there exists $\lim_{\substack{x \to x_0 \ y \to x_0}} \frac{f(x) - f(y)}{x - y}$

If $f: \mathbb{R} \to \mathbb{R}$ is continuously differentiable then

there exists
$$\lim_{\substack{x \to x_0 \ y \to x_0}} \frac{f(x) - f(y)}{x - y}$$

Whence

$$f'_{\mathbb{R}^T}(x_0) = \lim_{\substack{x \to x_0 \\ y \to x_0}} \frac{f(x) - f(y)}{x - y}$$

If $f : \mathbb{R}^T \to \mathbb{R}^T$ is differentiable at x_0 then, given an arbitrary neighbourhood, V of $f'_{\mathbb{R}^T}(x_0)$, there is a neighbourhood, U of x_0 , such that $\frac{f(x) - f(y)}{x - y} \in V$

whenever $x < x_0 < y$ and $x, y \in U$

If $f : \mathbb{R}^T \to \mathbb{R}^T$ is differentiable at x_0 then, given an arbitrary neighbourhood, V of $f'_{\mathbb{R}^T}(x_0)$, there is a neighbourhood, U of x_0 , such that $\frac{f(x) - f(y)}{x - y} \in V$

whenever $x < x_0 < y$ and $x, y \in U$

Whence
$$f'_{\mathbb{R}^T}(x_0) = \lim_{\substack{x \to x_0 \ y \to x_0}} \frac{f(x) - f(y)}{x - y}$$

$$(a,b) \coloneqq \{x \in \mathbb{R}^T; a < x < b\}$$

 $(a,b] \coloneqq (a,b) \cup \{b\}$

 $[a,b) \coloneqq \{a\} \cup (a,b)$

 $[a,b] \coloneqq \{a\} \cup (a,b) \cup \{b\}$

We could define $[a,b] = \{x \in \mathbb{R}^T ; a \le x \le b\}$ but then we would have $[a,\Phi] = \emptyset$

We prefer our definition which gives

 $[a, \Phi] = \{a, \Phi\}$

$$|I| \coloneqq \begin{cases} 0 & \text{, if } I = \emptyset \\ k - k & \text{, if } I = \{k\} \text{ for some } k \in \mathbb{R}^T \\ b - a & \text{, otherwise} \end{cases}$$

We say χ_A is the *characteristic function* of a set, *A*, if and only if

$$\chi_A(x) = \begin{cases} 1 & , \text{ if } x \in A \\ 0 & , \text{ if } x \notin A \end{cases}$$

A set, $P = (x_0, ..., x_n)$, is said to be a *partition* of [a,b], if and only if $x_0, ..., x_n \in [a,b], x_0 = a, x_n = b$ and $\begin{cases} \text{if } n = 2 \text{ then } x_0 \leq x_1 \\ \text{if } n > 2 \text{ then } x_0 \leq x_1 \leq \cdots \leq x_{n-1} \leq x_n \end{cases}$

 $\varphi : [a,b] \to \mathbb{R}^T$ is a *step function*, if and only if there is a partition, $P = (x_0, \dots, x_n)$ of [a,b], and $c_1, \dots, c_n \in \mathbb{R}^T$, such that

$$\varphi = \sum_{j=1}^n c_j X_{I_j},$$

where $I_j = (x_{j-1}, x_j]$ for all $j \in \{1, \dots, n\}$

The set of step functions on [a,b] is S([a,b])

Let
$$a, b \in \mathbb{R}^T$$
 and let $\varphi = \sum_{j=1}^n c_j X_{I_j}$ be a step function

on [*a*,*b*]. Then the *integral in* \mathbb{R}^T , of φ on [*a*,*b*], is

$$\int_{\mathbb{R}^T}^b \varphi(x) \, dx \coloneqq \sum_{\substack{j=1\\j; \, c_j \neq 0}}^n c_j \Big| I_j \Big|$$

In transreal numbers, \measuredangle is not equivalent to \ge

For example $\Phi \not< 0$ but $\Phi \ge 0$ does not hold

 $f:[a,b] \to \mathbb{R}^T$ is integrable in \mathbb{R}^T on [a,b], if and only if

$$\inf\left\{\int_{\mathbb{R}^{T}}^{b} \varphi(x) \, dx; \, \varphi \in S([a,b]) \text{ and } \varphi \not< f\right\} = \sup\left\{\int_{\mathbb{R}^{T}}^{b} \sigma(x) \, dx; \, \sigma \in S([a,b]) \text{ and } f \not< \sigma\right\}$$

Whence the integral of f in \mathbb{R}^T on [a,b] is

$$\int_{\mathbb{R}^{T}}^{b} f(x) \, dx \coloneqq \inf \left\{ \int_{\mathbb{R}^{T}}^{b} \varphi(x) \, dx; \, \varphi \in S([a,b]) \text{ and } \varphi \leq f \right\}$$

Let $a, b \in \mathbb{R}$ and let $f : [a, b] \to \mathbb{R}$ be a bounded function. Then f is Riemann integrable in \mathbb{R} , if and only if f is integrable in \mathbb{R}^T

Let $a, b \in \mathbb{R}$ and let $f : [a, b] \to \mathbb{R}$ be a bounded function. Then f is Riemann integrable in \mathbb{R} , if and only if f is integrable in \mathbb{R}^T

$$\int_{a}^{b} f(x) \, dx = \int_{\mathbb{R}^{T}}^{b} f(x) \, dx$$

Let $f: [-\infty, \infty] \to \mathbb{R}$ be a function that is Riemann integrable on every closed subinterval of $(-\infty, \infty)$. The improper Riemann integral $\int_{-\infty}^{\infty} |f|(x) dx$ exists if and only if f is integrable in \mathbb{R}^{T}

Let $f: [-\infty, \infty] \to \mathbb{R}$ be a function that is Riemann integrable on every closed subinterval of $(-\infty, \infty)$. The improper Riemann integral $\int_{-\infty}^{\infty} |f|(x) dx$ exists if and only if f is integrable in \mathbb{R}^{T}

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{\infty} f(x) \, dx$$

Let $f: [-\infty, \infty] \to \mathbb{R}$ be a function that is Riemann integrable on every closed subinterval of $(-\infty, \infty)$. The improper Riemann integral $\int_{-\infty}^{\infty} |f|(x) dx$ exists if and only if f is integrable in \mathbb{R}^{T}

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{\mathbb{R}^{T}}^{\infty} f(x) \, dx$$

In future work we do not need absolute convergence

Let $a,b \in \mathbb{R}$ and let $f:[a,b] \to \mathbb{R}^T$ be a function such that $f((a,b]) \subset \mathbb{R}, f(a) = \infty$ and f is Riemann integrable on any subinterval in (a,b]. Then the Riemann integral, $\int_a^b |f|(x) dx$, exists, if and only if f is integrable in \mathbb{R}^T

Let $a, b \in \mathbb{R}$ and let $f : [a, b] \to \mathbb{R}^T$ be a function such that $f((a,b]) \subset \mathbb{R}, f(a) = \infty$ and f is Riemann integrable on any subinterval in (a,b]. Then the Riemann integral, $\int_{a}^{b} |f|(x) dx$, exists, if and only if f is integrable in \mathbb{R}^T $\int_{a}^{b} f(x) \, dx = \int_{x}^{b} f(x) \, dx$

Let $a, b \in \mathbb{R}$ and let $f : [a, b] \to \mathbb{R}^T$ be a function such that $f((a,b]) \subset \mathbb{R}, f(a) = \infty$ and f is Riemann integrable on any subinterval in (a,b]. Then the Riemann integral, $\int_{a}^{b} lf l(x) dx$, exists, if and only if f is integrable in \mathbb{R}^T $\int_{a}^{b} f(x) \, dx = \int_{\mathbb{R}^{T}}^{b} f(x) \, dx$

In future work we do not need absolute convergence

Example

If $a \in \mathbb{R}$ and $f(a) \in \mathbb{R}$ then

$$\int_{\mathbb{R}^T}^a f(x) \, dx = 0$$

Example

If $a \in \{-\infty, \infty, \Phi\}$ then

$$\int_{\mathbb{R}^T}^a f(x) \, dx = \Phi$$

Example

$$\int_{\mathbb{R}^T}^{\Phi} f(x) \, dx = \int_{\mathbb{R}^T}^{a} f(x) \, dx = \Phi$$

Conclusion

- Transreal derivatives extend real derivatives
- Transreal integrals extend real integrals
- It is known that Newton's laws of motion extend to transarithmetic and transcalculus

Value

Reach and Reliability

- Transcalculus allows the solution of mathematical and physical problems at singularities
- Makes mathematical software more reliable

Transcalculus is a *very* good idea