Transreal Limits Expose Category Errors

Dr James Anderson FBCS CITP CSci Prof. Tiago S dos Reis

Agenda

- Advantages of transreal limits
- Transreal tangent
- Negative zero is a category error
- Transreal limits
- Value to science and society

Advantages of Translimits

Translimits

- Build on the foundation of transreal arithmetic
- Extend real analysis to transreal analysis
- Allow the solution of mathematical and physical problems at singularities
- Make mathematical software more reliable

Transtangent

Transreal Number Line

Geometrical Construction

Period 2π

Infinite Windings

No known geometrical construction of infinite windings so use power series evaluated with transreal arithmetic

$$\sin \infty = \infty - \frac{\infty^3}{3!} + \frac{\infty^5}{5!} - \dots$$
$$= \infty - \frac{\infty}{3!} + \frac{\infty}{5!} - \dots$$
$$= \infty - \infty + \infty - \dots$$
$$= \Phi + \infty - \dots$$
$$= \Phi$$

Infinite Windings

Similarly

$\sin\theta = \cos\theta = \tan\theta = \Phi$

When

 $\theta \in \{-\infty,\infty,\Phi\}$

Category Error

Dividing by minus zero instead of zero can be wrong!

Conjectures

- Definite, non-finite values of the tangent spread, by trigonometric identities, to many transreal and transcomplex, trigonometric functions
- Definite, non-finite, geometrical constructions spread to many transreal and transcomplex functions
- So transreal and transcomplex functions are less arbitrary than their ordinary counterparts

Neighbourhood of a transreal number x

Neighbourhood of a transreal number x

 $x \in \mathbb{R} \Longrightarrow (x - \varepsilon, x + \varepsilon)$ where $\varepsilon \in \mathbb{R}^+$

Neighbourhood of a transreal number x

 $x \in \mathbb{R} \Longrightarrow (x - \varepsilon, x + \varepsilon)$ where $\varepsilon \in \mathbb{R}^+$

 $x = -\infty \Longrightarrow [-\infty, b)$ where $b \in \mathbb{R}$

Neighbourhood of a transreal number x

 $x \in \mathbb{R} \Longrightarrow (x - \varepsilon, x + \varepsilon)$ where $\varepsilon \in \mathbb{R}^+$

 $x = -\infty \Longrightarrow [-\infty, b)$ where $b \in \mathbb{R}$

 $x = \infty \Longrightarrow (a, \infty]$ where $a \in \mathbb{R}$

Neighbourhood of a transreal number x

 $x \in \mathbb{R} \Longrightarrow (x - \varepsilon, x + \varepsilon)$ where $\varepsilon \in \mathbb{R}^+$

 $x = -\infty \Longrightarrow [-\infty, b)$ where $b \in \mathbb{R}$

 $x = \infty \Longrightarrow (a, \infty]$ where $a \in \mathbb{R}$

 $x = \Phi \Longrightarrow \{\Phi\}$

Transreal topology contains real topology

Transreal topology contains real topology $A \subset \mathbb{R}^T$ is open on $\mathbb{R}^T \Rightarrow A \cap \mathbb{R}$ is open on \mathbb{R}

Transreal topology contains real topology $A \subset \mathbb{R}^T$ is open on $\mathbb{R}^T \Rightarrow A \cap \mathbb{R}$ is open on \mathbb{R} $A \subset \mathbb{R}$ is open on $\mathbb{R} \Rightarrow A$ is open on \mathbb{R}^T

 \mathbb{R}^T is a Hausdorff space

 \mathbb{R}^T is a Hausdorff space

 \mathbb{R}^T is a disconnected space

 \mathbb{R}^{T} is a Hausdorff space

 \mathbb{R}^{T} is a disconnected space

 \mathbb{R}^{T} is a separable space

 \mathbb{R}^T is a Hausdorff space

- \mathbb{R}^{T} is a disconnected space
- \mathbb{R}^T is a separable space
- \mathbb{R}^T is a compact space

 \mathbb{R}^T is a Hausdorff space

- \mathbb{R}^T is a disconnected space
- \mathbb{R}^T is a separable space
- \mathbb{R}^T is a compact space
- Φ is the unique isolated point of \mathbb{R}^T

 $\lim_{n\to\infty} x_n = L \in \mathbb{R} \Leftrightarrow \lim_{n\to\infty} x_n = L, \text{ in the usual sense, in } \mathbb{R}$

 $\lim_{n\to\infty} x_n = L \in \mathbb{R} \iff \lim_{n\to\infty} x_n = L, \text{ in the usual sense, in } \mathbb{R}$

 $\lim_{n\to\infty} x_n = -\infty \text{ in } \mathbb{R}^T \Leftrightarrow (x_n)_{n\in\mathbb{N}} \text{ diverges, in } \mathbb{R}, \text{ to } -\infty$

$$\begin{split} & \lim_{n \to \infty} x_n = L \in \mathbb{R} \Leftrightarrow \lim_{n \to \infty} x_n = L, \text{ in the usual sense, in } \mathbb{R} \\ & \lim_{n \to \infty} x_n = -\infty \text{ in } \mathbb{R}^T \Leftrightarrow (x_n)_{n \in \mathbb{N}} \text{ diverges, in } \mathbb{R}, \text{ to } -\infty \\ & \lim_{n \to \infty} x_n = \infty \text{ in } \mathbb{R}^T \Leftrightarrow (x_n)_{n \in \mathbb{N}} \text{ diverges, in } \mathbb{R}, \text{ to } \infty \end{split}$$

 $\lim_{n\to\infty} x_n = L \in \mathbb{R} \iff \lim_{n\to\infty} x_n = L, \text{ in the usual sense, in } \mathbb{R}$ $\lim x_n = -\infty$ in $\mathbb{R}^T \Leftrightarrow (x_n)_{n \in \mathbb{N}}$ diverges, in \mathbb{R} , to $-\infty$ $n \rightarrow \infty$ $\lim_{n \to \infty} x_n = \infty \text{ in } \mathbb{R}^T \Leftrightarrow (x_n)_{n \in \mathbb{N}} \text{ diverges, in } \mathbb{R}, \text{ to } \infty$ $n \rightarrow \infty$ $\lim x_n = \Phi \Leftrightarrow$ there is $k \in \mathbb{N}$ such that $x_n = \Phi$ for all $n \ge k$ $n \rightarrow \infty$

Every monotone sequence of transreals is convergent

Every monotone sequence of transreals is convergent

Every transreal sequence has a convergent subsequence

Every monotone sequence of transreals is convergent

Every transreal sequence has a convergent subsequence

$$\lim_{n \to \infty} x_n = L, \lim_{n \to \infty} z_n = L \text{ and } x_n \leq y_n \leq z_n \Longrightarrow \lim_{n \to \infty} y_n = L$$

Limit of Functions

 $\lim_{x \to x_0} f(x) = L \neq \Phi \Leftrightarrow \lim_{x \to x_0} f(x) = L \text{ in the usual sense in } \mathbb{R}$

Limit of Functions

 $\lim_{x \to x_0} f(x) = L \neq \Phi \Leftrightarrow \lim_{x \to x_0} f(x) = L \text{ in the usual sense in } \mathbb{R}$

 $\lim_{x \to x_0} f(x) = \Phi \Leftrightarrow \text{ there is a neighbourhood } U \text{ of } x_0$ such that $f(x) = \Phi$ for all $x \in U \setminus \{x_0\}$

Limit of Functions

 $\lim_{x \to x_0} f(x) = L \neq \Phi \Leftrightarrow \lim_{x \to x_0} f(x) = L \text{ in the usual sense in } \mathbb{R}$

 $\lim_{x \to x_0} f(x) = \Phi \Leftrightarrow \text{ there is a neighbourhood } U \text{ of } x_0$ such that $f(x) = \Phi$ for all $x \in U \setminus \{x_0\}$

 $\lim_{x \to x_0} f(x) = L \Leftrightarrow \lim_{n \to \infty} f(x_n) = L \text{ for all } (x_n)_{n \in \mathbb{N}}$ such that $x_n \neq x_0$ and $\lim_{n \to \infty} x_n = x_0$

Let $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$ then

Let $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$ then

 $\lim_{n\to\infty} (x_n + y_n) = x + y$ when $x, y \in \{-\infty, \infty\}$ and $x + y = \Phi$ do not occur simultaneously

Let $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$ then

 $\lim_{n\to\infty} (x_n + y_n) = x + y$ when $x, y \in \{-\infty, \infty\}$ and $x + y = \Phi$ do not occur simultaneously

 $\lim_{n\to\infty} (x_n y_n) = xy$ when $x, y \in \{0, \infty, -\infty\}$ and $xy = \Phi$ do not occur simultaneously

 $y \neq 0 \Longrightarrow \lim_{n \to \infty} (y_n^{-1}) = y^{-1}$

$$y \neq 0 \Longrightarrow \lim_{n \to \infty} (y_n^{-1}) = y^{-1}$$

y = 0 and there is $k \in \mathbb{N}$ such that $y_n < 0$ for all $n \ge k$ $\Rightarrow \lim_{n \to \infty} (y_n^{-1}) = -(y^{-1})$

$$y \neq 0 \Longrightarrow \lim_{n \to \infty} (y_n^{-1}) = y^{-1}$$

y = 0 and there is $k \in \mathbb{N}$ such that $y_n < 0$ for all $n \ge k$ $\Rightarrow \lim_{n \to \infty} (y_n^{-1}) = -(y^{-1})$

y = 0 and there is $k \in \mathbb{N}$ such that $y_n > 0$ for all $n \ge k$

 $\Rightarrow \lim_{n \to \infty} (y_n^{-1}) = y^{-1}$

Continuity of Functions

f is continuous in $x_0 \in \mathbb{R} \Leftrightarrow f$ is continuous in x_0 , in the usual sense, in \mathbb{R}

Continuity of Functions

f is continuous in $x_0 \in \mathbb{R} \Leftrightarrow f$ is continuous in x_0 , in the usual sense, in \mathbb{R}

f is continuous in $x_0 \Leftrightarrow \lim_{n \to \infty} f(x_n) = f(x_0)$ for all $(x_n)_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} x_n = x_0$

Continuity of Functions

f is continuous in $x_0 \in \mathbb{R} \Leftrightarrow f$ is continuous in x_0 , in the usual sense, in \mathbb{R}

f is continuous in $x_0 \Leftrightarrow \lim_{n \to \infty} f(x_n) = f(x_0)$ for all $(x_n)_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} x_n = x_0$

f is continuous $\Leftrightarrow f^{-1}(B)$ is open, for all open B

Conclusion

- Real values of the transtangent are equal to real values of the tangent and have the same period of a half rotation
- Infinite values of the transtangent have a period of a whole rotation - the same as the period of the real values of both the real and transreal sine and cosine
- Negative zero is a category error
- Conjecture that transreal and transcomplex functions are less arbitrary than their ordinary counterparts

Conclusion

- The space of transreal numbers is a disconnected, separable, compact, Hausdorff space with nullity as the unique isolated point
- Translimits extend real analysis to transreal analysis
- Building up from transreal arithmetic to transreal limits is sound, going the other way, like IEEE floating-point arithmetic, is a category error

Value

Reach and Reliability

- Translimits allow the solution of mathematical and physical problems at singularities
- Make mathematical software more reliable

Translimits are a Foundation