PERSPEX MACHINE X: SOFTWARE DEVELOPMENT

COPYRIGHT

Copyright 2006 Society of Photo-Optical Instrumentation Engineers. This paper will be
published in Vision Geometry XV, Longin Jan Lateki, David M. Mount, Angela Y. Wu,
Editors, Proceedings of SPIE Vol. 6499 (2007) and is made available as an electronic copy
with permission of SPIE. One print or electronic copy may be made for personal use only.
Systematic or multiple reproduction, distribution to multiple locations via electronic or
other means, duplication of any material in this paper for a fee or for commercial
purposes, or modifications of the content of the paper are prohibited.

© SPIE 2006. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

Perspex Machine X: Software Development

Sam Noble, Benjamin A. Thomas, James A.D.W. Anderson”
Computer Science, The University of Reading, England

Abstract

The Perspex Machine arose from the unification of computation with geometry. We now report significant redevelopment
of both a partial C compiler that generates perspex programs and of a Graphical User Interface (GUI). The compiler is
constructed with standard compiler-generator tools and produces both an explicit parse tree for C and an Abstract Syntax
Tree (AST) that is better suited to code generation. The GUI uses a hash table and a simpler software architecture to
achieve an order of magnitude speed up in processing and, consequently, an order of magnitude increase in the number of
perspexes that can be manipulated in real time (now 6,000). Two perspex-machine simulators are provided, one using
trans-floating-point arithmetic and the other using transrational arithmetic. All of the software described here is available
on the world wide web.

The compiler generates code in the neural model of the perspex. At each branch point it uses a jumper to return control to
the main fibre. This has the effect of pruning out an exponentially increasing number of branching fibres, thereby greatly
increasing the efficiency of perspex programs as measured by the number of neurons required to implement an algorithm.
The jumpers are placed at unit distance from the main fibre and form a geometrical structure analogous to a myelin sheath
in a biological neuron. Both the perspex jumper-sheath and the biological myelin-sheath share the computational function
of preventing cross-over of signals to neurons that lie close to an axon. This is an example of convergence driven by
similar geometrical and computational constraints in perspex and biological neurons.

Keywords: perspex compiler, perspex GUI, perspex simulator, trans-floating-point arithmetic.

1. Introduction

The perspex machine, introduced in,” unifies geometry and computation so that all Turing computations can be performed
geometrically, and all geometrical shapes and operations describe some, possibly super-Turing, computation. In particular,
this means that Turing programs can be given in linguistic and pictorial form. Hence, compilers and Graphical User
Interfaces (GUIs) have an equal role to play in developing Turing programs for the perspex machine. Whilst the super-
Turing properties of a perspex machine are not accessible to a digital computer, it may be that the continuity of perspex
operations4 is important in practical programs that interact with an apparently analogue world. In this case the different
psychological limits in a user’s language processing and hand-eye coordination might mean that some operations can only
be performed linguistically whilst others can only be performed graphically. For example, a user might easily describe a
first-order predicate calculus program linguistically, but find it impossible to paint one with a virtual paint brush.
Conversely, a user might easily weld two perspex programs together with a virtual arc-welder, but find it impossible to
describe the weld linguistically. Hence, compilers and GUIs have a complementary role to play in enabling a user to
express computations in the perspex machine and we should, therefore, expect that perspex compilers and perspex GUIs
will co-evolve.

There is, to date, very little experience of developing perspex programs so it is not clear how to balance the roles of
linguistic and graphical description of computations. All previous perspex compilers,5 GUIs,>° and simulators>® were
one-off research developments aimed at supporting the C programming language. This language was chosen as a target
because it is a relatively simple language that exercises much of the imperative programming paradigm, and because there
are good compiler-generator tools for C. In future, we expect to switch effort to developing a specialist language for the
perspex machine, but, for the time being, the discipline of implementing a standard language is beneficial.

* Corresponding author. author@bookofparagon.com, http://www.bookofparagon.com
Computer Science, The University of Reading, Reading, Berkshire, England, RG6 6AY.

© SPIE 2006. Home: http://www.bookofparagon.com

mailto:author@bookofparagon.com
http://www.bookofparagon.com
http://www.bookofparagon.com

We now report the development of a compiler, GUI, and two simulators using robust software tools. One of the simulators
uses trans-floating-point arithmetic and the other uses transrational arithmetic. Whilst the simulators and GUI can be used
to manipulate useful perspex programs, the compiler is at too early a stage of development to be widely useful.
Nonetheless, it provides a basis for developing future C to perspex compilers.

The reader may wish to note that all of the software described here is available on the world wide web. 1

2. Compiler

In earlier work we reported a hand-built, top-down compiler, implemented in the Al language Popl1, that compiles a
subset of the C programming language into perspexes.’ This compiler generates code in terms of the projective perspex-
instruction that is used to prove the Turing completeness of the perspex machine;” but this instruction is far more difficult
to use than the general-linear instruction introduced with the universal perspex machine.” The new compiler uses the
general-linear form of the instruction. This leads to simpler code generation and, in particular, a simpler method for
performing multiplication and division. The new compiler compiles a subset of BS ISO 9899:1900 C. The compiler is
generated by standard compiler-generator tools — Flex'? and Bison.'? It relies on the GCC compiler14 to perform pre-
processing of source code, such as file inclusion and macro expansion. The compiler reads a single source file and,
optionally, provides four kinds of output. Firstly, it produces the printable form of a full syntax tree for C which is
intended to support debugging of the compiler. Secondly, it produces a verbose description of the compilation, again as an
aid to de-bugging the compiler. Thirdly, it produces the printable form of an Abstract Syntax Tree (AST) which is used to
generate perspex code. And, finally, it generates perspex code in an interchange language. The interchange language is
then loaded into a perspex-machine simulator where it is executed. The transrational simulator has a Graphical User
Interface (GUI) that can be used to step through the execution and obtain diagnostic feedback.

The compiler preserves some aspects of the original compiler.6 It continues to use the ¢+ = 0 hyperplane for builtin
functions; it continues to use the + = 1 hyperplane for user-defined constants, variables, and functions; and it reserves the
t>1 hyperplanes for recursive function calls. The allocation of program elements to perspex space is handled by a
perspex-space-manager within the compiler. The compiler is intended to be used on correct C code that strictly conforms
to the BS ISO 9899:1900 C standard. It does report syntax errors, but error handling is not so sophisticated as in a typical
C compiler. The compiler is intended as a research vehicle to explore perspex implementations of standard programming
languages. Later, it would be sensible to consider programming languages specifically designed for the perspex machine,
but this must await a fuller understanding of the practical properties of the machine. The compiler, GUI, and simulators
are available on the world wide web.!!

2.1 Scope of the Compiler

The compiler can read only a single source file, because the perspex-space-manager does not have the facility to relocate
code. However, the source file may be arbitrarily long and may be pre-processed to give effect to #include, macro
expansion, and inlining; but the machine-code interface is not supported. The perspex to C compiler can handle only C
source, not machine code. The compiler can perform full syntax checking, though the checking is not so sophisticated as
in a standard compiler. It can generate code only for a very limited subset of C, but it does give warnings of any
unsupported language features that are used in the source code.

Code is generated to support the following language features. Declarations of numerical constants and variables, with or
without initialisers, are supported, but all such objects are cast to trans-floating-point numbers. The arithmetical
operations +, -, ¥ / are supported, as is assignment. The postfix incremental operators ++ and -- are supported, but the
corresponding prefix operators are not supported. Function declaration, with or without parameter lists is supported, as is
ellipsis in function prototypes. The control statement if—else is supported, as are while loops. Compound statements of all
supported declarations and statements are supported. This is a slight reduction in language support as compared to the
hand-written compiler, but the present compiler has the advantage of full syntax checking and much easier development,
because it uses standard compiler-generator tools (Flex12 and Bison,"? variants of Lex and Yaccg). The compiler is
bundled with a C* library that supports trans-floating-point arithmetic and a trans-floating-point simulation of the
perspex machine.'!

© SPIE 2006. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

2.2 Perspex-Space Manager

The perspex-space-manager is responsible for associating user code and data with locations in perspex space. It obeys the
convention of using the 7 = 0 hyperplane for builtin functions; the ¢ = 1 hyperplane for user-defined constants,
variables, and functions; and it preserves the > 1 hyperplanes recursive structures, but recursion is not supported by the
compiler.

The builtin functions are arranged spatially with respect to the origin of the 1 = 0 hyperplane. Transput variables which
perform both input and output, or just internal transfers of information, are laid along the x-axis. Input variables are laid
along the y-axis. And output variables are laid out along the z-axis.

y - input

Stdin

Stdout
Stderr

Reciprocal

Pseudorandom
Stack

Z - output X - transput

Figure 1: Spatial arrangement of input, output, and transput.

The builtin functions are implemented in terms of active perspexes that perform some action on reading and/or writing.
These include: active perspexes that read and/or write one character at a time to/from the C streams stdin, stdout, stderr;
an active perspex that accepts a perspex on write, but returns a perspex with the reciprocal of each element on read; a
perspex that accepts any perspex on write, but returns a perspex with pseudorandom elements on read; and, finally, a
perspex that operates as a stack manager. If an attempt is made to read from stdout or stderr it returns nullity, by analogy
with the C value Null. If an attempt is made to write to stdin it over-writes the value there. This is a design fault, it ought
to push the value back onto the input stream by analogy with the C function ungetc.

Some of the builtin functions are intended for research unrelated to the development of the perspex compiler, GUI, and
simulator. In future, it might be better to introduce builtins via libraries that instantiate them in the ¢ = 0 hyperplane.
Builtins must be supplied to provide physical side effects, such as input, output, and power management. There may also
be practical advantage in supplying them to perform operations that are costly to support directly in the perspex machine’s
operations, such as finding the reciprocal. But supplying abstract data types, such as a stack, as a builtin is purely a matter
of convenience that could have been done otherwise. For example, a stack manager could be defined in perspexes and
could be stored in the + = 0 hyperplane to be copied into any location where it is needed. In other words, the ¢ = 0
hyperplane could be a repository of “genetic” machines that are transported into the body of perspex space to do their
work at the location and time they are needed. Once they have fulfilled their role these “phenotypic” machines could be
deleted.

2.3 Perspex Code Templates

The compiler generates code in the neural model of the perspex. At each branch point it uses a jumper™’ to return control
to the main fibre. This has the effect of pruning out an exponentially increasing number of branching fibres, thereby
greatly increasing the efficiency of perspex programs as measured by the number of neurons required to implement an
algorithm. The jumpers are placed at unit distance from the main fibre and form a geometrical structure analogous to a
myelin sheath in a biological neuron. Myelin sheaths increase the speed of the transmission of electrical spikes along a

© SPIE 2006. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

biological axon and electrically insulate axons, thereby reducing the cross-over of information from one neuron to
another. The jumpers in perspex neurons have no effect on the speed of transmission of a signal, but they do prevent cross-
over of signals by pruning out fibres. Thus, the jumper sheath in perspex neurons and the myelin sheath in biological
neurons have the common function of preventing cross-over of signals. That these two structures have some commonality
in function is to be expected, because both perspex neurons and biological neurons are geometrical structures that effect
computation.

2.4 Abstract Syntax Tree

The Abstract Syntax Tree (AST) is an n-branch tree where each node is of type ASTNode. The AST only stores
information that is necessary to traverse the tree itself and to reconstruct the original meaning of the source code for the
purposes of implementing it in the neural model of the perspex machine. The AST does not preserve all of the distinctions
made in the source code, indeed, its value is that it removes unnecessary distinctions, thereby simplifying code generation
in the perspex neural model. Each node stores: a count of any sub-branches; the target location for the node in perspex
space; a descriptive textual label for the node, used for debugging and building textual version of the AST; a name if the
AST represents an identifier or function; the node’s type, stored as an int; a union containing a pointer to a struct holding
node-specific data; and an array of pointers to sub branches, if any. The tree holds data for C’s: declarations; function
declarations; literals; identifiers; expressions; jump statements; iteration statements; selection statements; and parameter-
type lists.

The AST is built bottom up as the source code is parsed. A terminal statement in the grammar either creates an AST node
with some data and passes it back to its parent statement, or else creates a ‘zombie’ node, used purely for passing
information back to its parent. Depending on the parent, for each AST node passed to it, it either references the nodes in
its branches-list directly, or uses information from the nodes to construct one or more AST nodes which it passes back.

A YACC grammar for the AST is included in the Appendix. The full source code for the compiler is available on the
world wide web. !

2.5 Perspex Interchange-Language

The perspex interchange-language is very simple. The language is written in textual form as a, possibly empty, sequence
of data, written between matching brackets. A description of type “X” is bracketed by “StartX” and “EndX”. Brackets
are recursive. An unrecognised “X” is ignored so recursively nested comments may be introduced by any unrecognised
“X”. However, the brackets “StartComment” and “EndComment” are provided to allow the explicit introduction of
comments as uninterpreted text. So far, very few brackets have been defined. Data sequences are written in the printable
form used by C™.

« Numbers are written as C™" integer or floating-point numbers, or as transrational ratios of an integer numerator and
denominator separated by the symbol “/”".

o StartPerspex / EndPerspex brackets sixteen numbers in row order that make up the elements of a perspex represented
as a 4 x 4 matrix.

o StartPerspexPosition / EndPerspexPosition brackets four numbers in row order that make up a position vector in
perspex space. Pairs of Perspex and PerspexPosition brackets define a perspex and its location. This is a design fault. It
would be better to bracket the Perspex and PerspexPosition brackets together in some superordinate bracket.

o StartEntryFrom / EndEntryFrom brackets four numbers in row order that specify a position vector in perspex space
that is the entry point of the perspex machine. That is, the machine is started at this point. All text after the EndEntryFrom
bracket is ignored. This is a design fault.

o StartCommnet / EndComment brackets uninterpreted text.
The following example shows the specification of a single perspex at location (0,0, 0,0) with the perspex machine

starting execution at this point.

© SPIE 2006. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

StartPerspex
1.0 2 3/1 4/5
1/0 -1/0 0/0 O
12 34
12 34
EndPerspex

StartPerspexPosition 0 0 0 0 EndPerspexPosition
StartEntryFrom 0 0 0 0 EndEntryFrom

This language is overly primitive and is under specified, relying on the textual form of numbers in C*™. In future it might
be helpful to define brackets that pass compiler pragmas and GUI commands both ways between the GUI and the
compiler and to adopt a more formal definition of the language. The current definition is, however, sufficient to support
research on compiler design and GUIs for the perspex machine. It is expected that the interchange language will co-evolve
with the compiler and GUI.

3. Graphical User Interface

The original graphical user interface was implemented in C*" and made heavy use of OpenGL and the GLUT library to
handle visual display and user interaction.® The GUI interfaced to a simulation of the perspex machine implemented in
C*" that, in turn, made heavy use of the LEDA library to perform rational arithmetic.® The simulation accessed 4D
perspex space in linear time. This was sufficient to operate on 600 perspexes in real time as demonstrated in an
implementation of Dijkstra’s solution to the travelling salesman problem. This simulation supported the saving of images
to file, but did not support the input or output of the perspex interchange language to file. Therefore, all data had to be
hand coded in the source file.

The simulator continues to use LEDA to support rational arithmetic. It uses a hash table to access perspex space in near
constant time. It supports all of the builtin procedures described in section 2.2. In particular, it supports the input and
output of perspexes in the perspex interchange language, section 2.5. The new GUI runs an order of magnitude faster than
the old one and can now operate on 6,000 perspexes in real time. The source code for the GUI is available at.!!

The GUI is bundled with a library that overloads many of the arithmetical operations in C*™" so that they operate on
transrational numbers. It was found to be useful to extend the sign operation so that it returns the infinities directly. In this
way, it is possible to use the sign operation in a switch statement to operate individually on each of the strictly
transrational numbers and to operate of the sign of the rational numbers. This, programmatic, definition of the sign of a
number is given next.

0:ad = ©
l1:0<a<wo
O:a =
sgn(a) = ©a- @ (Eqn 1)

—1:—0<a<0

A library that provides the transrational trigonometric functions of the half-tangent, defined in,! is also provided. This
library uses nullity and positive infinity, not negative infinity, following an earlier specification of the transrational
numbers. This library does not provide the transreal trigonometric functions defined in.®

The GUI provides functionality similar to the previous version,® but also adds mouse look. This is an alteration of the

virtual camera’s yaw and pitch with, respectively, horizontal and vertical motions of the mouse. This look and feel is
provided by some computer games and is copied here as an intuitive mode of interaction.

© SPIE 2006. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

4. Conclusion

We report the development of a compiler, GUI, and two simulators using robust software tools. One of the simulators uses
trans-floating-point arithmetic and the other uses transrational arithmetic. Whilst the simulators and GUI can be used to
manipulate useful perspex programs, the compiler is at too early a stage of development to be widely useful. Nonetheless,
it provides a basis for developing future C to perspex compilers. The compiler uses the general-linear form of the
instruction. This leads to simpler code generation and, in particular, a simpler method for performing multiplication and
division. Code generation exploits an Abstract Syntax Tree (AST) which compresses the semantics of the C source so that
it retains just enough information to translate the source to the neural model of the perspex machine. For example, the
AST discards a great deal of type information because, for example, all C numerical types are represented by the single
numerical type supplied by a perspex neuron. The AST is used in conjunction with a perspex space manager that is
responsible for laying out code and built in resources so that no clashes occur. The space manager lays out all I/O in the
t = 0 hyperplane with transput variables laid out along the x-axis, input variables laid out along the y-axis, and output
variable along the z-axis. Code is laid out in the >0 hyperplanes. It is laid out in neural model with jumpers that force
control back onto a single fibre. The jumpers operate like myelin sheaths around a biological neuron, they keep signals
within the neuron and prevent cross-over to nearby neurons. This simplifies the task of the space manager. It need only lay
out a single filament of neurons corresponding to a single thread of processing in a serial processor.

A combined GUI and perspex-simulator is also reported. It allows the user to interact with a perspex machine simulator
operating on the neural model. Various software enhancements deliver a ten-fold increase in speed over previous GUI/
simulators. The GUI can now display programs with 6,000 neurons operating in real time. The implementation of mouse
look has improved the usability of the GUI.

5. Appendix

The following YACC grammar defines the Abstract Syntax Tree used in the compiler. The full source is available on the
world wide web.'!

5.1 Expressions

identifier:
IDENTIFIER (Create new identifier)

primary expression:
identifier (Pass back Identifier node)
INTEGER (Identifier, type = INTEGER)
CHARACTER (Identifier, type = CHARACTER)
FLOATING (Identifier, type = FLOATING)
STRING (Identifier, type = STRING)
‘(' expression ')’ (Pass back expression node)

postfix expression:
primary expression (Pass back single node)
postfix expression '['expression']' (not implemented)

postfix expression '

("argument expression list')'
(not implemented)
postfix expression PLUSPLUS (Create new node, exp as branch)

postfix expression MINUSMINUS (Create new node, exp as branch)
argument expression list:

argument expression list ',' assignment expression
(Pass back both expression nodes)

© SPIE 2006. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

unary expression:
postfix expression

cast expression:
unary expression

multiplicative expression:

cast expression (Pass back node)

multiplicative expression '*' cast expression
(Create new expression node, nodes as branches)

multiplicative expression '/' cast expression
(Create new expression node, nodes as branches)

multiplicative expression '%' cast expression
(Create new expression node, nodes as branches)

additive expression:
multiplicative expression (Pass back single node)
additive expression '+' multiplicative expression
(Create new exp node, exp nodes as branches)
additive expression '-' multiplicative expression
(Create new exp node, exp nodes as branches)

shift expression:
additive expression

relational expression:
shift expression (Pass back single node)
relational expression '<' shift expression
relational expression '>' shift expression
relational expression LTEQ shift expression
relational expression GTEQ shift expression

equality expression:
relational expression
equality expression EQ relational expression
equality expression NOTEQ relational expression

and expression:
equality expression

exclusive or expression:
and_expression

inclusive or expression:
exclusive or expression

logical and expression:
inclusive or expression

logical or expression:
logical and expression

© SPIE 2006. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

conditional expression:
logical or expression

assignment expression:
conditional expression

assignment operator:
'=' (Create new terminal node, type = assignment)

expression:
assignment expression
expression ',' assignment expression

constant expression:
conditional expression

declaration:
declaration specifiers init declarator list ';'
(Return node = $1, with initializer and

initializeTo set to those in $2)
declaration specifiers ';'

declaration specifiers:
storage class specifier declaration specifiers
storage class_specifier
type specifier declaration specifiers
type specifier
type qualifier declaration specifiers
(Return node = $2, with type qualifier set to $1)
type qualifier

init declarator list:
init declarator

init declarator:
declarator (Return node = $1 with initializeTo = AST ZOM)
declarator '=
(Return node $1 with initializeTo and initializer
set tp those in $3)

initializer

type specifier:

YYVOID

YYCHAR

YYSHORT

YYINT

YYLONG

YYFLOAT

YYDOUBLE

YYSIGNED

YYUNSIGNED
(For YYVOID to YYUNSIGNED, a new terminal, declaration
node is created, with its type equal to the approptiate token)

© SPIE 2006. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

struct or union specifier
enum_specifier
TYPEDEF NAME

type qualifier:
YYCONST
YYVOLATILE
(For YYCONST and YYVOLATILE, a new terminal, declaration
node 1is created, with its type equal to the approptiate
token)

declarator:
direct declarator

direct declarator:

identifier (Create new terminal declaration node, where the

name 1is the that of $1)
'('" declarator '")'

direct declarator '(' parameter type list ')'
(Create new function declaration node. The
function’s type is given by $1, the presence of
ellipsis, parameter count and parameters is
supplied by $3)

direct declarator '(' ')'

type qualifier list:

type qualifier

parameter type list:
parameter list
parameter list ',' ELLIPSIS

parameter list:
parameter declaration
(Create new parameter list node, with $1 added to
the 1list)
parameter list ',' parameter declaration
(Add $3 to list in $1)

parameter declaration:
declaration specifiers declarator

(Return $1 with name taken from $2)

identifier list:
identifier

abstract declarator:
pointer

initializer:
assignment expression

© SPIE 2006. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

initializer list:
initializer

5.2 Statements

statement:
labeled statement
compound statement
expression_statement
selection statement
iteration statement
jump_statement

compound statement:
'{'" '}'" (Create new (empty) function body node with)
'{' statement list '}'
(Create a new function body with statements only)
'{' declaration list '}’
(Create a new function body with local declarations only)
'{' declaration list statement list '}'
(Create a new function body with declarations and
statements)

declaration list:
declaration
declaration list declaration

statement list:
statement
statement list statement

expression statement:
';'" (Return NULL)

expression ';'

selection_ statement:

YYIF '(' expression ')' statement

(Create new IF selection node with branches pointing to
$3 and $5)
YYIF '(' expression ')' statement YYELSE statement

(Create new IF selection node with branches pointing to
$3, $5 and $7)

iteration statement:

YYWHILE ' (' expression ')' statement
(Create new ITERATION statement with branches pointing to
$3 and $5)

YYDO statement YYWHILE ' (' expression ')' ';'
(Create new ITERATION statement with branches pointing to
$2 and $5)

YYFOR " (' ';' ';'" '")' statement
(Create empty ITERATION statement of type YYFOR)

YYFOR ' (' expression ';' ';' ')' statement

© SPIE 2006. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

5.3

(Create ITERATION statement of type YYFOR with branches
pointing to $3 and $7)

YYFOR '(' ';' expression ';' ')' statement
(Create ITERATION statement of type YYFOR with branches
pointing to $4 and $7)

YYFOR ' (' expression ';' expression ';' ')' statement
(Create ITERATION statement of type YYFOR with branches
pointing to $3, $4 and $8)

YYFOR ' (' ';' ';' expression ')' statement
(Create ITERATION statement of type YYFOR with branches
pointing to $5 and $7)

YYFOR ' (' expression ';' ';' expression ')' statement
(Create ITERATION statement of type YYFOR with branches
pointing to $3, $6 and $8)

YYFOR ' (' ';' expression ';' expression ')' statement
(Create ITERATION statement of type YYFOR with branches
pointing to $4, $6 and $7)

YYFOR ' (' expression ';' expression ';' expression ')'

statement

(Create ITERATION statement of type YYFOR with branches
pointing to $3, $5 and $7)

jump statement:

YYGOTO identifier ';'

YYCONTINUE ';'

YYBREAK ';'

YYRETURN ';'

YYRETURN expression ';'

(Create new JUMP statement with $2 as a branch)

External Definitions

start:

translation unit
(Set the AST’s root node to $1)

translation unit:

external declaration

translation unit external declaration
(Create new TRANSLATION UNIT node with $1 and $2 as
branches)

external declaration:

function definition
declaration

function definition:

declaration specifiers declarator compound statement
declarator declaration list compound statement
declarator compound statement

© SPIE 2006. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

10
11
12
13
14

6. References

J. A. D. W. Anderson “Exact Numerical Computation of the Rational General Linear Transformations” in Vision
Geometry XI, Longin Jan Lateki, David M. Mount, Angela Y. Wu, Editors, Proceedings of SPIE Vol. 4794, 22-28
(2002).

J.A.D.W. Anderson, “Perspex Machine” in Vision Geometry XI Longin Jan Latecki, David M. Mount, Angela Y. Wu,
Editors, Proceedings of the SPIE Vol. 4794, 10-21 (2002).

J.A.D.W. Anderson, “Perspex Machine II: Visualisation” in Vision Geometry XIII Longin Jan Latecki, David M.
Mount, Angela Y. Wu, Editors, Proceedings of the SPIE Vol. 5675, 100-111 (2005).

J. A.D. W. Anderson “Perspex Machine I1I: Continuity Over the Turing Operations” in Vision Geometry XIII, Longin
Jan Lateki, David M. Mount, Angela Y. Wu, Editors, Proceedings of SPIE Vol. 5675, 112-123 (2005).

M. P. Spanner & J. A. D. W. Anderson “Perspex Machine V: Compilation of C Programs” in Vision Geometry XIV,
Longin Jan Lateki, David M. Mount, Angela Y. Wu, Editors, Proceedings of SPIE Vol. 6066 (2006).

C.J. A. Kershaw & J. A. D. W. Anderson “Perspex Machine VI: A Graphical User Interface to the Perspex Machine”
in Vision Geometry XIV, Longin Jan Lateki, David M. Mount, Angela Y. Wu, Editors, Proceedings of SPIE Vol. 6066
(2006).

J.A.D.W. Anderson, “Perspex Machine VII: The Universal Perspex Machine” in Vision Geometry XIV Longin Jan
Latecki, David M. Mount, Angela Y. Wu, Editors, Proceedings of the SPIE Vol. 6066 (2006).

J.A.D.W. Anderson, “Perspex Machine IX: Transreal Analysis” Vision Geometry XV Longin Jan Latecki, David M.
Mount, Angela Y. Wu, Editors, Proceedings of the SPIE, this volume, (2007).

J.R. Levine, T. Mason, D. Brown Lex and Yacc, 2nd edition, O’Reilly (1992).

ISO/IEC 9899 Programming Languages - C, British Standards Institute, London, England (1990).

At the time of the conference source code will be available at: http://www.bookofparagon.com/Pages/Downloads.htm
Flex: http://gnuwin32.sourceforge.net/flex.htm (Last accessed 27 April 2006).

Bison: http://www.gnu.org/software/bison/bison.html (Last accessed 1 June 2006).

GCC: http://gcc.gnu.org/ (Last accessed 2 June 2006).

© SPIE 2006. Home: http://www.bookofparagon.com

http://gcc.gnu.org/
http://www.bookofparagon.com/Pages/Downloads.htm
http://www.bookofparagon.com/Mathematics/SPIE.2002.Perspex.pdf
http://www.bookofparagon.com/Mathematics/PerspexMachineII.pdf
http://www.bookofparagon.com/Mathematics/PerspexMachineIII.pdf
http://www.bookofparagon.com/Mathematics/PerspexMachineV.pdf
http://www.bookofparagon.com/Mathematics/PerspexMachineVI.pdf
http://www.bookofparagon.com/Mathematics/PerspexMachineVII.pdf
http://www.bookofparagon.com/Mathematics/SPIE.2002.Exact.pdf
http://gnuwin32.sourceforge.net/flex.htm
http://www.bookofparagon.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

